Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

September 15, 2024

The Space of Physical Frameworks (Part 4)

Posted by John Baez

In Part 1, I explained my hopes that classical statistical mechanics reduces to thermodynamics in the limit where Boltzmann’s constant kk approaches zero. In Part 2, I explained exactly what I mean by ‘thermodynamics’. I also showed how, in this framework, a quantity called ‘negative free entropy’ arises as the Legendre transform of entropy.

In Part 3, I showed how a Legendre transform can arise as a limit of something like a Laplace transform.

Today I’ll put all the puzzle pieces together. I’ll explain exactly what I mean by ‘classical statistical mechanics’, and how negative free entropy is defined in this framework. Its definition involves a Laplace transform. Finally, using the result from Part 3, I’ll show that as k0k \to 0, negative free entropy in classical statistical mechanics approaches the negative free entropy we’ve already seen in thermodynamics!

Posted at 8:00 PM UTC | Permalink | Followups (2)

September 9, 2024

The Space of Physical Frameworks (Part 3)

Posted by John Baez

In Part 1, I explained how statistical mechanics is connected to a rig whose operations depend on a real parameter β\beta and approach the ‘tropical rig’, with operations min\min and ++, as β+\beta \to +\infty. I explained my hope that if we take equations from classical statistical mechanics, expressed in terms of this β\beta-dependent rig, and let β+\beta \to +\infty, we get equations in thermodynamics. That’s what I’m slowly trying to show.

As a warmup, last time I explained a bit of thermodynamics. We saw that some crucial formulas involve Legendre transforms, where you take a function f:[,]f \colon \mathbb{R} \to [-\infty,\infty] and define a new one f˜:[,]\tilde{f} \colon \mathbb{R} \to [-\infty,\infty] by

f˜(s)=inf x(sxf(x)) \tilde{f}(s) = \inf_{x \in \mathbb{R}} (s x - f(x))

I’d like the Legendre transform to be something like a limit of the Laplace transform, where you take a function ff and define a new one f^\hat{f} by

f^(s)= e sxf(x)dx \hat{f}(s) = \int_{-\infty}^\infty e^{-s x} f(x) \, d x

Why do I care? As we’ll see later, classical statistical mechanics features a crucial formula that involves a Laplace transform. So it would be great if we could find some parameter β\beta in that formula, take the limit β+\beta \to +\infty, and get a corresponding equation in thermodynamics that involves a Legendre transform!

As a warmup, let’s look at the purely mathematical question of how to get the Legendre transform as a limit of the Laplace transform — or more precisely, something like the Laplace transform. Once we understand that, we can tackle the physics in a later post.

Posted at 3:20 PM UTC | Permalink | Followups (8)

September 7, 2024

The Space of Physical Frameworks (Part 2)

Posted by John Baez

I’m trying to work out how classical statistical mechanics can reduce to thermodynamics in a certain limit. I sketched out the game plan in Part 1 but there are a lot of details to hammer out. While I’m doing this, let me stall for time by explaining more precisely what I mean by ‘thermodynamics’. Thermodynamics is a big subject, but I mean something more precise and limited in scope.

Posted at 12:00 PM UTC | Permalink | Followups (7)