Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

October 17, 2022

Fine Structure

I’m teaching the undergraduate Quantum II course (“Atoms and Molecules”) this semester. We’ve come to the point where it’s time to discuss the fine structure of hydrogen. I had previously found this somewhat unsatisfactory. If one wanted to do a proper treatment, one would start with a relativistic theory and take the non-relativistic limit. But we’re not going to introduce the Dirac equation (much less QED). And, in any case, introducing the Dirac equation would get you the leading corrections but fail miserably to get various non-leading corrections (the Lamb shift, the anomalous magnetic moment, …).

Instead, various hand-waving arguments are invoked (“The electron has an intrinsic magnetic moment and since it’s moving in the electrostatic field of the proton, it sees a magnetic field …”) which give you the wrong answer for the spin-orbit coupling (off by a factor of two), which you then have to further correct (“Thomas precession”) and then there’s the Darwin term, with an even more hand-wavy explanation …

So I set about trying to find a better way. I want use as minimal as possible input from the relativistic theory and get the leading relativistic correction(s).

Posted by distler at 9:00 PM | Permalink | Followups (2)