Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

January 6, 2020

Entanglement for Laymen

I’ve been asked, innumerable times, to explain quantum entanglement to some lay audience. Most of the elementary explanations that I have seen (heck, maybe all of them) fail to draw any meaningful distinction between “entanglement” and mere “(classical) correlation.”

This drives me up the wall, so each time I am asked, I strive to come up with an elementary explanation of the difference. Rather than keep reinventing the wheel, let me herewith record my latest attempt.

“Entanglement” is a bit tricky to explain, versus “correlation” — which has a perfectly classical interpretation.

Say I tear a page of paper in two, crumple up the two pieces into balls and (at random) hand one to Adam and the other to Betty. They then go their separate ways and — sometime later — Adam unfolds his piece of paper. There’s a 50% chance that he got the top half, and 50% that he got the bottom half. But if he got the top half, we know for certain that Betty got the bottom half (and vice versa).

That’s correlation.

In this regard, the entangled state behaves exactly the same way. What distinguishes the entangled state from the merely correlated is something that doesn’t have a classical analogue. So let me shift from pieces of paper to photons.

You’re probably familiar with the polaroid filters in good sunglasses. They absorb light polarized along the horizontal axis, but transmit light polarized along the vertical axis.

Say, instead of crumpled pieces of paper, I send Adam and Betty a pair of photons.

In the correlated state, one photon is polarized horizontally, and one photon is polarized vertically, and there’s a 50% chance that Adam got the first while Betty got the second and a 50% chance that it’s the other way around.

Adam and Betty send their photons through polaroid filters, both aligned vertically. If Adam’s photon makes it through the filter, we can be certain that Betty’s gets absorbed and vice versa. Same is true if they both align their filters horizontally.

Say Adam aligns his filter horizontally, while Betty aligns hers vertically. Then either both photons make it though (with 50% probability) or both get absorbed (also with 50% probability).

All of the above statements are also true in the entangled state.

The tricky thing, the thing that makes the entangled state different from the correlated state, is what happens if both Adam and Betty align their filters at a 45° angle. Now there’s a 50% chance that Adam’s photon makes it through his filter, and a 50% chance that Betty’s photon makes it through her filter.

(You can check this yourself, if you’re willing to sacrifice an old pair of sunglasses. Polarize a beam of light with one sunglass lens, and view it through the other sunglass lens. As you rotate the second lens, the intensity varies from 100% (when the lenses are aligned) to 0 (when they are at 90°). The intensity is 50% when the second lens is at 45°.)

So what is the probability that both Adam and Betty’s photons make it through? Well, if there’s a 50% chance that his made it through and a 50% chance that hers made it through, then you might surmise that there’s a 25% chance that both made it through.

That’s indeed the correct answer in the correlated state.

In fact, in the correlated state, each of the 4 possible outcomes (both photons made it through, Adam’s made it through but Betty’s got absorbed, Adam’s got absorbed but Betty’s made it through or both got absorbed) has a 25% chance of taking place.

But, in the entangled state, things are different.

In the entangled state, the probability that both photons made it through is 50% – the same as the probability that one made it through. In other words, if Adam’s photon made it through the 45° filter, then we can be certain that Betty’s made it through. And if Adam’s was absorbed, so was Betty’s. There’s zero chance that one of their photons made it through while the other got absorbed.

Unfortunately, while it’s fairly easy to create the correlated state with classical tools (polaroid filters, half-silvered mirrors, …), creating the entangled state requires some quantum mechanical ingredients. So you’ll just have to believe me that quantum mechanics allows for a state of two photons with all of the aforementioned properties.

Sorry if this explanation was a bit convoluted; I told you that entanglement is subtle…

Posted by distler at January 6, 2020 2:30 PM

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/3185

4 Comments & 0 Trackbacks

Re: Entanglement for Laymen

Thank you for this post. Can you please tell me how this last result comes from a state such as (|up>|down> - |down>|up>)/sqrt(2) ?
If Adam’s photon goes through, does the state collapse to something? How does it imply that Betty’s photon must also go through? I’m just trying to understand within the context of the above state and the axioms if quantum mechanics.

Posted by: Dave on January 7, 2020 8:27 PM | Permalink | Reply to this

Re: Entanglement for Laymen

We are indeed studying an entangled state in a product of two-state systems. But we are measuring the operators (0 1 1 0)𝟙\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right)\otimes\mathbb{1} and 𝟙(0 1 1 0)\mathbb{1}\otimes\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right) (in the basis where |up=(1 0)|\text{up}\rangle=\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right) and |down=(0 1)|\text{down}\rangle=\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)).

I am sure you can construct the corresponding projection operators and compute the probabilities for the various outcomes of those measurements.

Posted by: Jacques Distler on January 9, 2020 5:56 PM | Permalink | PGP Sig | Reply to this

Re: Entanglement for Laymen

Why did my question get deleted?

Posted by: Dave on January 9, 2020 12:35 PM | Permalink | Reply to this

Re: Entanglement for Laymen

It was swept up with a bunch of spam. Restored from backup now.

Posted by: Jacques Distler on January 9, 2020 6:04 PM | Permalink | PGP Sig | Reply to this

Post a New Comment