Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

January 26, 2007

Globular Extended QFT of the Charged n-Particle: String on BG

Posted by Urs Schreiber

To begin filling the definition of the charged quantum nn-particle with life, here I walk through a very simple but still interesting example: “a string on the classifying space of a 2-group G 2G_2”.

This turns out to be a “globular extened quantum field theory” q(tra)q(\mathrm{tra}), which to a “point” of the shape \bullet assigns a 2-vector space of states Mod [ΛG 2], \mathrm{Mod}_{\mathbb{C}[\Lambda G_2]} \,, namely the category of modules over the algebra of a certain groupoid – the loop groupoid of the 2-group G 2G_2 – and which to a “string” of the shape \bullet \to \bullet assigns the 2-linear identity map on this 2-vector space q(tra):()(Mod [ΛG 2]IdMod [ΛG 2]). q(\mathrm{tra}) : (\bullet \to \bullet) \;\; \mapsto \;\; ( \mathrm{Mod}_{\mathbb{C}[\Lambda G_2]} \stackrel{\mathrm{Id}}{\to} \mathrm{Mod}_{\mathbb{C}[\Lambda G_2]} ) \,.

For the special case that the 2-group is the “string group of a compact, simple and simply connected Lie groupG 2=String k(G) G_2 = \mathrm{String}_k(G) the 2-space of states over the point is the 2-space of GG-equivariant gerbe modules on GG, also known as certain D-branes on GG.

A (2-)state of the string on BString k(G)B \mathrm{String}_k(G) is a 2-linear 2-map Vect Id Vect ψ() ψ() ψ() Mod [ΛG 2] Id Mod [ΛG 2], \array{ \mathrm{Vect}_\mathbb{C} &\stackrel{\mathrm{Id}}{\to}& \mathrm{Vect}_\mathbb{C} \\ \psi(\bullet)\downarrow\;\;\; & \;\;\;\;\Downarrow \psi(\bullet\to\bullet) & \;\;\;\downarrow \psi(\bullet) \\ \mathrm{Mod}_{\mathbb{C}[\Lambda G_2]} &\stackrel{\mathrm{Id}}{\to}& \mathrm{Mod}_{\mathbb{C}[\Lambda G_2]} } \,, which is nothing but a gerbe module/D-brane ψ() \psi(\bullet) over \bullet, together with an automorphism ψ():ψ()ψ(). \psi(\bullet \to \bullet) : \psi(\bullet) \to \psi(\bullet) \,.

If we close the string by gluing its endpoints by means of a trace, we find that a state of the closed string is a function on connected components of ΛG 2\Lambda G_2 Tr(ψ())[π 0(ΛG 2),]. \mathrm{Tr}(\psi(\bullet \to \bullet)) \in [\pi_0(\Lambda G_2),\mathbb{C}] \,.

Almost everything I mention here is also described in The Globular Extended QFT of the String propagating on the Classifying Space of a strict 2-Group.

Before talking about the string, which is the first interesting simple example of a quantum charged nn-particle (at least when we restrict attention to kinematics, as I shall do), we should first get a feeling for what an ordinary particle looks like, when regarded as a special case of a charged nn-particle.

The charged (1-)particle.

On a (“target”) space P 1(X) P_1(X) we have a vector bundle with connection, (E,)(E,\nabla), given by its parallel transport(-ana-)functor: tra:P 1(X)Vect. \mathrm{tra} : P_1(X) \to \mathrm{Vect} \,.

Coupling a particle {}\{\bullet\} to this bundle amounts to specifying the configurations of the particle in (target) space, i.e. to choosing a sub-category conf[{},P 1(X)]P 1(X). \mathrm{conf} \subset [\{\bullet\},P_1(X)] \simeq P_1(X) \,.

The importance of this choice of sub-category concerns the morphisms. Every isomorphism in P 1(X)P_1(X) that we retain in conf\mathrm{conf} will make the source and target configuration isomorphic.

So we only want to retain those morphisms in conf\mathrm{conf} that connect “gauge equivalent” configurations.

For instance, if P 1(X)P_1(X) were the groupoid of paths in an orbifold, regarded itself as a groupoid, we would want to retain all those morphisms in conf\mathrm{conf} that relate points which are identitfied under the orbifold action.

So in particular, if P 1(X)P_1(X) is just the ordinary path groupoid on an ordinary space, we keep only the identity morphisms in conf\mathrm{conf}, since all points in XX we then want to regard as different configurations of our particle {}\{\bullet\}.

This is why we would set configuration space equal to the discrete category over XX: conf=Disc(X). \mathrm{conf} = \mathrm{Disc}(X) \,.

Now, the general procedure for finding the quantum kinematics of the particle

{} \{\bullet\}

on target space

P 1(X) P_1(X)

with configurations

Disc(X) \mathrm{Disc}(X)

and coupled to the background field

tra:P 1(X)Vect \mathrm{tra} : P_1(X) \to \mathrm{Vect}

is to pull-push tra\mathrm{tra} through the correspondence

Disc(X)×{} ev P 1(X) {}. \array{ & & \mathrm{Disc}(X)\times \{\bullet\} \\ & {}^{\mathrm{ev}}\swarrow\;\; && \searrow \\ P_1(X) &&&& \{\bullet\} } \,.

In our case here this just means that we

- first restrict tra\mathrm{tra} to the constant paths

- and then push it forward to a point.

The result of this is the functor q(tra):Γ(E), q(\mathrm{tra}) : \bullet \mapsto \Gamma(E) \,, which sends the point particle to the vector space of sections of the original vector bundle EE. This push-forward is described in The First Part of the Story of Quantizing by Pushing to a Point….

More details on the above treatment of the charged 1-particle, including a discussion of how this looks like when we locally trivialize and make everything smooth, is given in section 1.2 of Quantum 2-States: Sections of 2-vector bundles.

Interlude: how to compute the nn-space of sections.

The main point in determining the quantum theory of a charged nn-particle is to figure out the result of pull-pushing an nn-functor on target space tra:tarphas\mathrm{tra} : \mathrm{tar} \to \mathrm{phas} through a correspondence conf×par ev tar par. \array{ & & \mathrm{conf}\times \mathrm{par} \\ & {}^{\mathrm{ev}}\swarrow\;\; && \searrow \\ \mathrm{tar} &&&& \mathrm{par} } \,.

For computing this quantization, it is convenient to proceed as follows.

We take the product conf×par\mathrm{conf} \times \mathrm{par} to be adjoint to the internal hom of our notion of nCatn\mathrm{Cat} #. Then [conf×par,phas][conf,[par,phas]]. [\mathrm{conf} \times \mathrm{par},\mathrm{phas}] \simeq [\mathrm{conf},[\mathrm{par},\mathrm{phas}]] \,. The image of tra:tarphas\mathrm{tra} : \mathrm{tar} \to \mathrm{phas} under [tar,phas] ev * [conf×par,phas] [conf,[par,phas]] tar tar * \array{ [\mathrm{tar},\mathrm{phas}] & \stackrel{\mathrm{ev}^*}{\to} & [\mathrm{conf}\times \mathrm{par},\mathrm{phas}] & \stackrel{\sim}{\to} & [\mathrm{conf},[\mathrm{par},\mathrm{phas}]] \\ \mathrm{tar} && \mapsto && \mathrm{tar}_* } is simply postcomposition with tra\mathrm{tra}: tra *:(parγtar)(parγtartraphas). \mathrm{tra}_* \;\; : \;\; ( \mathrm{par} \stackrel{\gamma}{\to} \mathrm{tar} ) \mapsto \;\; ( \mathrm{par} \stackrel{\gamma}{\to} \mathrm{tar} \stackrel{\mathrm{tra}}{\to} \mathrm{phas} ) \,. The push-forward [conf×par,phas]p 1 *¯[par,phas] [\mathrm{conf}\times \mathrm{par},\mathrm{phas}] \stackrel{\bar{p_1^*}}{\to} [\mathrm{par},\mathrm{phas}] then corresponds to the push-forward conf p {} [conf,[par,phas]] p *¯ [{},[par,phas]] [par,phas] tar * q(tra). \array{ \mathrm{conf} & \stackrel{p}{\to} & \{\bullet\} \\ [\mathrm{conf},[\mathrm{par},\mathrm{phas}]] & \stackrel{\bar{p^*}}{\to} & [\{\bullet\},[\mathrm{par},\mathrm{phas}]] & \stackrel{\sim}{\to} & [\mathrm{par},\mathrm{phas}] \\ \mathrm{tar}_* && \mapsto && q(\mathrm{tra}) } \,. This q(tra)q(\mathrm{tra}) is then defined by Hom(p *f ,tra *)Hom(f ,q(tra)), \mathrm{Hom}(p^* f_\bullet, \mathrm{tra}_*) \simeq \mathrm{Hom}(f_\bullet, q(\mathrm{tra})) \,, for any f :[par,phas]f_\bullet : {\bullet} \to [\mathrm{par},\mathrm{phas}].

In practice, it is often sufficient to consider this equivalence for f =1 f_\bullet = 1_\bullet, the tensor unit in [{},[par,phas]][\{\bullet\},[\mathrm{par},\mathrm{phas}]].

This is what I shall do in the following example.

The string on BG 2B G_2.

I now define a “charged nn-particle” (parγconftartraphas) \left( \mathrm{par} \stackrel{\gamma \in \mathrm{conf}}{\to} \mathrm{tar} \stackrel{\mathrm{tra}}{\to} \mathrm{phas} \right) as follows:

I model the string by the parameter space par=Σ(), \mathrm{par} = \Sigma(\mathbb{Z}) \,, which is the category with a single object, \bullet, one nontrivial morphism \bullet \to \bullet and all its composites (and all inverses of that, but this will be irrelevant in the present context).

For the “target space” that I want this string to propagate on I choose any strict 2-group G 2G_2 and set tar=Σ(G 2), \mathrm{tar} = \Sigma(G_2) \,, which is nothing but that 2-group, now regarded as a 2-groupoid with a single object.

The reason why I keep calling this setup a “string on the classifying space of G 2G_2” is that by sending any configuration γ:Σ()Σ(G 2) \gamma : \Sigma(\mathbb{Z}) \to \Sigma(G_2) to the world of topological spaces, by applying the nerve functor and geometrically realizing the resulting simplicial map |γ|:|Σ()||Σ(G 2)| |\gamma| : |\Sigma(\mathbb{Z})| \to |\Sigma(G_2)| it becomes a map from the circle (with basepoint) to BG 2B G_2: |γ|:S 1BG 2. |\gamma| : S^1_\bullet \to B G_2 \,. But beware that this geometrically realized description is somewhat misleading. As we shall see, the categorical formalism (“globular extended QFT”) remembers the difference between a circular open string and a closed string.

All that remains to be specified, now, is the 2-bundle with connection on target space that we wish to couple our 2-particle to. For the moment, we I be content with understanding the simple case where this 2-bundle is trivial, of rank one and has trivial connection.

This means that I take tra:Σ(G 2)2Vect= VectMod \mathrm{tra} : \Sigma(G_2) \to 2\mathrm{Vect} = {}_{\mathrm{Vect}}\mathrm{Mod} to take everything to the identity on Vect\mathrm{Vect} itself tra()=Id Vect. \mathrm{tra}(\cdots) = \mathrm{Id}_\mathrm{Vect} \,.

As always, I consider this as taking values not in all possible Vect\mathrm{Vect}-linear categories, but only in those well-behaved ones that live inside the image of the canonical inclusion Bim VectMod. \mathrm{Bim} \hookrightarrow {}_{\mathrm{Vect}}\mathrm{Mod} \,. In this picture, a 2-vector space VV, i.e. an object in VectMod{}_{\mathrm{Vect}}\mathrm{Mod} is represented by an ordinary algebra AA, namely as the category Mod A\mathrm{Mod}_A of modules of that algebra.

In other words, I take the space of phases to be phas=Bim. \mathrm{phas} = \mathrm{Bim} \,.

But notice that the results mentioned at the very beginning of this entry are formulated by implciitly applying the embedding Bim VectMod\mathrm{Bim} \hookrightarrow {}_{\mathrm{Vect}}\mathrm{Mod}.

Finally, in order to completely specify our charged nn-particle, we need to choose a subcategory of configurations inside the category of all maps of the string into target space conf[Σ(),Σ(G 2)]. \mathrm{conf} \subset [\Sigma(\mathbb{Z}),\Sigma(G_2)] \,. Remember, from the example of the charged particle above, that the point of this choice of subcategory is mainly to to identify those configurations, that we want to regard as “gauge equivalent”.

But here I want something very easy to handle, so I simply take conf=[Σ(),Σ(G 2)]. \mathrm{conf} = [\Sigma(\mathbb{Z}),\Sigma(G_2)] \,.

Okay, that completes the definition of that charged 2-particle to which I gave the name “string on BG 2B G_2”. In summary, it looks like this: (Σ()γ[Σ(),Σ(G 2)]Σ(G 2)1Bim) \left( \Sigma(\mathbb{Z}) \stackrel{\gamma \in [\Sigma(\mathbb{Z}),\Sigma(G_2)]}{\to} \Sigma(G_2) \stackrel{1}{\to} \mathrm{Bim} \right)

Clearly, there are plenty of ways to make this setup more interesting and more involved, while still remaining inside the idea of a “string on BG 2B G_2”. But for the moment, let’s restrict attention to this very simple setup.

Now quantize.

To do so, I follow the prescription described in the above interlude. While not really difficult, this is something that does not really want to be explained inside a blog entry. My original derivation is in Categorical Trace and Sections of 2-Transport. A more focused description appears in 2-Monoid of Observables on String-G, which also contains the interpretation of this quantization for the case that G 2=String k(G)G_2 = \mathrm{String}_k(G).

So here I just state the result:

One finds that the space of sections of tra *=1 *\mathrm{tra}_* = 1_* (which is our 2-bundle on Σ(G 2)\Sigma(G_2) from the point of view of configuration space) is the category of loops inside the representations of the loop groupoid of G 2G_2.

Hom(1 *,1 *)ΛRep(ΛG 2). \mathrm{Hom}(1_* , 1_*) \simeq \Lambda \mathrm{Rep}(\Lambda G_2) \,.

This means the following:

ΛG 2\Lambda G_2 is a slight generalization of Simon Willerton’s loop groupoid. It is the categegory ΛG 2:=[Σ(),Σ(G 2)]/ \Lambda G_2 := [\Sigma(\mathbb{Z}),\Sigma(G_2)]/\sim obtained by identifying isomorphic 1-morphisms in our configuration space. Using Simon Willerton’s explanation of the ordinary loop groupoid, we see that we can think of ΛString k(G)\Lambda \mathrm{String}_k(G) as an incarnation of the central extension of the loop group of GG. For finite groups, this is made precise by Simon’s parmesam theorem.

As for any groupoid, we can consider the category of its representations ρ\rho Rep(ΛG 2)=[ΛG 2,Vect]. \mathrm{Rep}(\Lambda G_2) = [\Lambda G_2, \mathrm{Vect}] \,.

The point of 2-Monoid of Observables on String-G was to argue that these representations are nothing but the GG-equivariant twisted vector bundles on GG.

Now, a single section of our 2-bundle on the configuration space of our 2-particle is a loop in this category, in the sense that it is an automorphism of one of these representations: Obj(Hom(1 *,1 *))={ρLρ}. \mathrm{Obj}(\mathrm{Hom}(1_*,1_*)) = \left\{ \rho \stackrel{L}{\to} \rho \right\} \,.

Pushing forward this space of sections to a point, amounts, in our context, to finding an algebra AA (“living over the point \bullet”) and an AA-bimodule NN (“living over the string \bullet \to \bullet”), such that the category of bimodule homomorphism C Id C ψ() ψ() ψ() A N A \array{ \C\mathbb{C} &\stackrel{\mathrm{Id}}{\to}& \C\mathbb{C} \\ \psi(\bullet)\downarrow\;\;\; & \;\;\;\;\Downarrow \psi(\bullet\to\bullet) & \;\;\;\downarrow \psi(\bullet) \\ A &\stackrel{N}{\to}& A } is equivalent to the space of sections Hom(1 *,1 *)\mathrm{Hom}(1_*,1_*) just discussed.

It is easy to see that this is solved by letting A=[ΛG 2] A = \mathbb{C}[\Lambda G_2] be the groupoid algebra of ΛG 2\Lambda G_2

(This is the algebra generated, over \mathbb{C}, from the morphisms in ΛG 2\Lambda G_2, subject to the relation that the product of two generators is their composite, as morphisms, if that exists, or is zero otherwise.)

… and by letting N=A N = A be the identity morphism in the category of AA-bimodules, namely AA regarded as a bimodule over itself, in the obvious way.

As a result, then, we find that the globular extended quantum field theory of our 2-particle on BG 2B G_2 is the functor q(1):Σ()Bim q(1) : \Sigma(\mathbb{Z}) \to \mathrm{Bim} that acts as q(1):()[ΛG 2]Id[ΛG 2] q(1) : (\bullet \to \bullet) \mapsto \mathbb{C}[\Lambda G_2] \stackrel{\mathrm{Id}}{\to} \mathbb{C}[\Lambda G_2] on the string. If we interpret this under the canonical injection Bim2Vect\mathrm{Bim} \hookrightarrow 2\mathrm{Vect}, it looks like q(1):()Mod [ΛG 2]IdMod [ΛG 2]. q(1) : (\bullet \to \bullet) \mapsto \mathrm{Mod}_{\mathbb{C}[\Lambda G_2]} \stackrel{\mathrm{Id}}{\to} \mathrm{Mod}_{\mathbb{C}[\Lambda G_2]} \,.

I think I should pause here.

Posted at January 26, 2007 12:37 PM UTC

TrackBack URL for this Entry:

0 Comments & 4 Trackbacks

Read the post QFT of Charged n-particle: Chan-Paton Bundles
Weblog: The n-Category Café
Excerpt: Chan-Paton bundles from the pull-push quantization of the open 2-particle.
Tracked: February 7, 2007 8:19 PM
Read the post QFT of Charged n-Particle: Dynamics
Weblog: The n-Category Café
Excerpt: Definition of the dynamics of the charged quantum particle by pull-push along correspondences of path spaces.
Tracked: February 12, 2007 6:42 PM
Read the post QFT of Charged n-Particle: Gauge Theory Kinematics
Weblog: The n-Category Café
Excerpt: A review of Fleischhack's discussion of a Weyl algebra on spaces of generalized connections.
Tracked: March 1, 2007 3:28 PM
Read the post QFT of Charged n-Particle: Extended Worldvolumes
Weblog: The n-Category Café
Excerpt: Passing from locally to globally refined extended QFTs by means of the adjointness property of the Gray tensor product of the n-particle with the timeline.
Tracked: August 2, 2007 7:39 PM

Post a New Comment