Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

August 28, 2007

Arrow-Theoretic Differential Theory III: Higher Morphisms

Posted by Urs Schreiber

In Arrow-Theoretic Differential Theory, Part II I argued that we need to pass to tangent categories in order to understand, not just nn-curvature, but also higher morphisms of Lie nn-algebras.

In Vienna John Baez quizzed me about these ideas, thereby leading me to the more refined insight which I mentioned in More on Tangent Categories.

This insight, which involved making explicit a fact and a construction which I had already been using in a way but not truly realized myself, I have now started to seriously incorporate while revising the provisional Structure of Lie nn-algebras.

Since it all seems to work out quite nicely – unless I am making some dumb mistake – here is an update on that matter:

Higher Morphisms of Lie nn-Algebras from Arrow-Theoretic Differential Theory


We would like to achieve a good explicit understanding of higher morphisms of Lie nn-algebras. We notice that various formerly puzzling aspects of this seem to become clearer as one passes from Lie nn-algebras g (n)g_{(n)} to their Lie (n+1)(n+1)-algebras of inner derivations inn(g (n))\mathrm{inn}(g_{(n)}) in a certain way. Using this, we define higher morphisms of Lie nn-algebras explicitly and in general. These should constitute an (,1)(\infty,1)-category. While we fall short of verifying this in full generality, we do obtain the Baez-Crans 2-category of Lie 2-algebras [1] in the special case where we restrict everything to Lie 2-algebras.


The crucial point of the discussion is possibly best exhibited by the following simple example:

Let GG be any abelian group. Write ΣG\Sigma G for the corresponding one-object groupoid, and Σ 2G\Sigma^2 G for the corresponding one-object one-morhisms 2-groupoid. Write INN(G)\mathrm{INN}(G) for the codiscrete groupoid over GG.

We have canonically [2] a short exact sequence GINN(G)ΣG G \hookrightarrow \mathrm{INN}(G) \to \Sigma G of groupoids.

For this simple example, it is easy to see that the transformations obtained by first “opening up” and then restricting as above are in bijection with the ordinary transformations of the original functors.

As we pass to higher nn-groups, though, the situation becomes more flexible.

We find that at the level of Lie nn-algebras, it is only the “opened up” transformations which have a good direct description in the first place. We here define ordinary higher morphisms of Lie nn-algebras by the analogue of “opened up” and then restricted transformations.

Posted at August 28, 2007 8:35 PM UTC

TrackBack URL for this Entry:

1 Comment & 2 Trackbacks

Read the post Lie n-Algebra Cohomology
Weblog: The n-Category Café
Excerpt: On characteristic classes of n-bundles.
Tracked: September 7, 2007 6:02 PM
Read the post Obstructions, Tangent Categories and Lie N-tegration
Weblog: The n-Category Café
Excerpt: Thoughts on n-bundle theory in terms of Lie n-algebras.
Tracked: September 24, 2007 10:20 PM

Re: Arrow-Theoretic Differential Theory III: Higher Morphisms

The stuff about higher morphisms of L L_\infty-algebras which is discussed in the above entry has now made it into an article with Jim Stasheff and Hisham Sati:

L L_\infty-connections and applications to String- and Chen-Simons nn-transport (pdf).

Section 5.2 gives the general idea and definitions.

Section 6 shows what is really going on, and what that funny way to compute homotopies, which I had proposed in the above entry, is related to universal bundles and vertical flows on these.

We spell out how to compute transgression elements (Chern-Simons forms) using this construction.

In the appendix, a proof is given showing that our general notion of 2-morphisms of L L_\infty-algebras reproduces the definition given by John Baez and Alissa Crans in HDA VI and used in From loop groups to 2-groups, when we restrict it to Lie 2-algebras, i.e. to 2-term L L_\infty-algebras.

Posted by: Urs Schreiber on January 18, 2008 6:54 PM | Permalink | Reply to this

Post a New Comment