TrackBack URL for this Entry: https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/3490
Pardon the slight digression… I have nothing to say about “dynamical Chern-Simons gravity”, but this certainly brings to mind work of Dvali and Funcke that has perplexed me for a long time, e.g. this
In QCD, strong coupling infrared dynamics spontaneously breaks the symmetry (which is also explicitly broken by the ABJ anomaly and the quark mass term) leading to the interpretation of the as a pseudo-Goldstone boson. (In large- QCD, the effect of the ABJ anomaly is suppressed and, for massless quarks, the is a Goldstone boson, just like the rest of the pions.)
Gravity is infrared free, and absolutely does nothing like that (create a neutrino condensate analogous to the quark condensate in QCD). They just blithely assume that it does.
That assumption (as far as I can tell) is based on a flawed analogy with QCD. Pure Yang-Mills has a mass-gap. So (for instance) does 1-flavour QCD. Pure gravity does not have a mass gap. Introducing a massless fermion does not suddenly produce a mass gap where there was none before.
As to Putrov-Wang, I should have been clear that the gravitational ABJ anomaly in is intimately tied to proposals for generating the matter-antimatter asymmetry in the universe (“leptogenesis”). Introducing as in (1) cancels the anomaly (indeed, this is the 4D version of the famous Green-Schwarz anomaly cancellation mechanism).
Putrov and Wang seem to take more seriously than is warranted the introduction of the right-handed neutrinos that give rise (upon integrating them out) to the Weinberg term (3) in the low-energy effective theory. But that’s the theory which is valid when leptogenesis supposedly takes place. There’s nothing wrong about their analysis (indeed, it is quite pretty), but every useful statement about higher/categorical symmetries associated to should have a formulation in the effective theory.
Hello, Prof. Distler. I just read this post:
https://golem.ph.utexas.edu/~distler/blog/archives/002943.html#more
What would you say is a good undergrad particle physics book and a graduate particle physics book that you would use for such classes you’d be teaching. I suppose you’d be most likely using your own notes, but I’m curious about what you’d recommend an advanced undergraduate should look at or what a graduate student should look at. Thanks!
Generalized symmetries
Pardon the slight digression… I have nothing to say about “dynamical Chern-Simons gravity”, but this certainly brings to mind work of Dvali and Funcke that has perplexed me for a long time, e.g. this which claims that a gravitational axial anomaly of neutrinos has all kinds of phenomenological consequences. I also note that Putrov and Wang, in their conclusion (part 3), speculate on similar matters, but they frame it all in terms of the newly popular noninvertible, categorical, etc., symmetries.
It would also be nice to see a review of which such phenomenological proposals do and don’t make sense, from a string theory perspective. (I’m not saying you should write it! Maybe such a review already exists in the swampland literature…)