Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

November 8, 2024

Axiomatic Set Theory 8: Well Ordered Sets

Posted by Tom Leinster

Previously: Part 7.

By this point in the course, we’ve finished the delicate work of assembling all the customary set-theoretic apparatus from the axioms, and we’ve started proving major theorems. This week, we met well ordered sets and developed all the theory we’ll need. The main results were:

  • every family of well ordered sets has a least member — informally, “the well ordered sets are well ordered”;

  • the Hartogs theorem: for every set XX, there’s some well ordered set that doesn’t admit an injection into XX;

  • a very close relative of Zorn’s lemma that, nevertheless, doesn’t require the axiom of choice: for every ordered set XX and function φ\varphi assigning an upper bound to each chain in XX, there’s some chain CC such that φ(C)C\varphi(C) \in C.

I also included an optional chatty section on the use of transfinite recursion to strip the isolated points from any subset of \mathbb{R}. Am I right in understanding that this is what got Cantor started on set theory in the first place?

Diagram of an ordered set, showing a chain. I know, it's not *well* ordered

Posted at November 8, 2024 12:48 PM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/3578

0 Comments & 0 Trackbacks

Post a New Comment