A Curious Integral
Posted by John Baez
On Mathstodon, Robin Houston pointed out a video where Oded Margalit claimed that it’s an open problem why this integral:
is so absurdly close to , but not quite equal.
They agree to 41 decimal places, but they’re not the same!
So, a bunch of us tried to figure out what was going on.
Jaded nonmathematicians told us it’s just a coincidence, so what is there to explain? But of course an agreement this close is unlikely to be “just a coincidence”. It might be, but you’ll never get anywhere in math with that attitude.
We were reminded of the famous cosine Borwein integral
which equals for up to and including 55, but not for any larger :
But it was Sean O who really cracked the case, by showing that the integral we were struggling with could actually be reduced to an version of the cosine Borwein integral, namely
The point is this. A little calculation using the Weierstrass factorizations
lets you show
and thus
Then, a change of variables on the right-hand side gives
So, showing that
is microscopically less than is equivalent to showing that
is microscopically less than .
This sets up a clear strategy for solving the mystery! People understand why the cosine Borwein integral
equals for up to , and then drops ever so slightly below . The mechanism is clear once you watch the right sort of movie. It’s very visual. Greg Egan explains it here with an animation, based on ideas by Hanspeter Schmid:
- John Baez, Patterns that eventually fail, Azimuth, September 20, 2018.
Or you can watch this video, which covers a simpler but related example:
- 3Blue1Brown, Researchers thought this was a bug (Borwein integrals).
So, we just need to show that as , the value of the cosine Borwein integral doesn’t drop much more! It drops by just a tiny amount: about .
Alas, this doesn’t seem easy to show. At least I don’t know how to do it yet. But what had seemed an utter mystery has now become a chore in analysis: estimating how much
drops each time you increase a bit.
At this point if you’re sufficiently erudite you are probably screaming: “BUT THIS IS ALL WELL-KNOWN!”
And you’re right! We had a lot of fun discovering this stuff, but it was not new. When I was posting about it on MathOverflow, I ran into an article that mentions a discussion of this stuff:
- Eric W. Weisstein, Infinite cosine product integral, from MathWorld—A Wolfram Web Resource.
and it turns out Borwein and his friends had already studied it. There’s a little bit here:
- J. M. Borwein, D. H. Bailey, V. Kapoor and E. W. Weisstein, Ten problems in experimental mathematics, Amer. Math. Monthly 113 (2006), 481–509.
and a lot more in this book:
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, Massachusetts, A K Peters, 2004.
In fact the integral
was discovered by Bernard Mares at the age of 17. Apparently he posed the challenge of proving that it was less than . Borwein and others dived into this and figured out how.
But there is still work left to do!
As far as I can tell, the known proofs that
all involve a lot of brute-force calculation. Is there a more conceptual way to understand this difference, at least approximately? There is a clear conceptual proof that
That’s what Greg Egan explained in my blog article. But can we get a clear proof that
for some small constant , say or so?
One can argue that until we do, Oded Margalit is right: there’s an open problem here. Not a problem in proving that something is true. A problem in understanding why it is true.
Re: A Curious Integral
This is really interesting result! There’s a recent video (2 months ago) from 3Blue1Brown that talks about the Borwein Integrals, and a friend had this problem in a class too.
I also want to comment that these is a typo in the equality (it misses a 2 in the denominator), it should be like this: