Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

April 29, 2019

Right Properness of Left Bousfield Localizations

Posted by Mike Shulman

(Guest post by Raffael Stenzel)

This post is a sequel to the discussion of the mysterious nature of right properness and its understanding as an instance of coherence problems for presenting (,1)(\infty,1)-categorical structure. The last post discussed a relation between right properness of a model category \mathcal{M} and locally cartesian closedness of the underlying (,1)(\infty,1)-category Ho ()\mathrm{Ho}_{\infty}(\mathcal{M}). While the two properties – that is right properness of \mathcal{M} on the one hand and locally cartesian closedness of Ho ()\mathrm{Ho}_{\infty}(\mathcal{M}) on the other – are generally independent of each other, the post and its subsequent discussion basically established an equivalence of the two properties in the context of Cisinski model categories in the following sense; a presentable (,1)(\infty,1)-category 𝒞\mathcal{C} is locally cartesian closed iff there is a right proper Cisinski model category \mathcal{M} whose underlying (,1)(\infty,1)-category is equivalent to 𝒞\mathcal{C}. In this follow up, we aim to generalize this connection, and we do so via replacing “locally cartesian closedness” of (,1)(\infty,1)-categories by “semi-left exactness” of their reflective localizations.

While this is not meant to be an exhaustive description of the nature of right properness either, it hopefully gives another stimulus to kindle further discussion.

In the following we will relate right properness of model structures obtained via left Bousfield localization with semi-left exactness of the Bousfield localizations. Therefore, we give a definition of semi-left exact left Bousfield localizations and, while at it, also define combinatorial model categories with universal homotopy colimits to build a purely model categorical framework in which to phrase our observations in. A more detailed account can be found in Chapter 7 of my PhD thesis, prepared at the University of Leeds under the supervision of Nicola Gambino and submitted last month.

Recall that by Dugger’s and Lurie’s work there is a correspondence between combinatorial model categories and presentable (,1)(\infty,1)-categories, such that left Bousfield localizations of the former translate to reflective localizations of the latter.

The setting of model toposes developed by Rezk, and Toen and Vezzosi, and the setting of Grothendieck \infty-toposes developed by Lurie translate as a particular class of combinatorial/presentable objects back and forth in an analogous fashion. Indeed, in a nutshell, by the work of Rezk (Toposes and Homotopy Toposes) model toposes can be described exactly as those combinatorial model categories which are Quillen equivalent to left exact left Bousfield localizations of simplicial presheaf categories sPsh() proj\mathrm{sPsh}(\mathbb{C})_{\mathrm{proj}} for small simplicial categories \mathbb{C}. These are presentations of left exact localizations of presheaf \infty-toposes in the sense of Lurie. And hence emerges the correspondence of model toposes and Grothendieck \infty-toposes.

Now, the class of presentable locally cartesian closed (,1)(\infty,1)-categories and their relation to semi-left exact localizations has been analyzed by Gepner and Kock (Univalence in locally cartesian closed \infty-categories, arxiv). Here, a localization L:𝒞𝒞L\colon\mathcal{C}\rightarrow\mathcal{L}\mathcal{C} is said to be semi-left exact if LL preserves pullbacks of spans (f:ab,g:cb)(f\colon a\rightarrow b, g\colon c\rightarrow b) where aa and bb are local objects.

In the spirit of Rezk’s approach, in order to lift this analysis to a purely model categorical setting, say that a combinatorial model category has universal homotopy colimits if homotopy colimits commute with homotopy pullbacks in the sense of Toen and Vezzosi’s Giraud Axiom given in Definition 4.9.1.2 of HAG I. Then one can show that a combinatorial model category \mathcal{M} has universal homotopy colimits iff any of the following conditions hold.

  • \mathcal{M} satisfies Toen and Vezzosi’s Definition 4.9.1.2 for all arrows with or without fibrant domain and codomain.
  • \mathcal{M} satisfies Rezk’s descent property (P1) defined in Section 6.5 of Toposes and Homotopy
    Toposes
    .
  • Ho ()Ho_{\infty}(\mathcal{M}) is locally cartesian closed.

Then, we say that a left Bousfield localization L:L\colon\mathcal{M}\rightarrow\mathcal{L}\mathcal{M} is semi-left exact if LL preserves the homotopy pullback of spans (f:AB,g:CB)(f\colon A\rightarrow B, g\colon C\rightarrow B) such that the objects A,BA,B are fibrant in \mathcal{L}\mathcal{M}.

We hence obtain a correspondence between semi-left exact left Bousfield localizations between combinatorial model categories and semi-left exact localizations of presentable (,1)(\infty,1)-categories in the sense of Gepner and Kock. It then follows that, if \mathcal{M} is combinatorial with universal homotopy colimits, then semi-left exactness of L:L\colon\mathcal{M}\rightarrow\mathcal{L}\mathcal{M} implies that \mathcal{L}\mathcal{M} has universal homotopy colimits, too. It is reasonable to expect the converse to hold under the condition that the reflection RR preserves dependent products (as it is the case in the 1-categorical setting).

This yields a presentation theorem for combinatorial model categories with universal homotopy colimits via semi-left exact localizations of simplicial presheaf categories by the first part of Rezk’s proof of Theorem 6.9 in Toposes and Homotopy Toposes (that is the corresponding statement for model toposes and the presentation of such via left exact localizations).

Now, to eventually come back to right properness, we observe the following two facts. Let \mathcal{M} be a model category and \mathcal{M}\rightarrow\mathcal{L}\mathcal{M} a left Bousfield localization (note that we do not make any assumptions on \mathcal{M}).

  1. Suppose \mathcal{L}\mathcal{M} is right proper. Then the Bousfield localization \mathcal{M}\rightarrow\mathcal{L}\mathcal{M} is semi-left exact.
  2. Suppose \mathcal{M} is right proper. Then the Bousfield localization \mathcal{M}\rightarrow\mathcal{L}\mathcal{M} is semi-left exact if and only if the model category \mathcal{L}\mathcal{M} is right proper.

Proof: For arrows f:ABf\colon A\rightarrow B and g:CBg\colon C\rightarrow B in \mathcal{M}, successively replacing the objects and arrows fibrantly first in \mathcal{M} and then in \mathcal{L}\mathcal{M} gives the following sequence of pullback squares.

For Fact 1, assume \mathcal{L}\mathcal{M} is right proper and let f:ABf\colon A\rightarrow B be a map between local objects and g:CBg\colon C\rightarrow B. Here, in this generality by “local” we simply mean that AA and BB are fibrant objects in \mathcal{L}\mathcal{M}. Then, in the diagram, the fibrant replacements A\mathbb{R}A and B\mathbb{R}B are local, too, that means in fact already fibrant in the localization \mathcal{L}\mathcal{M}. So the fibration f\mathbb{R}f is also a fibration in \mathcal{L}\mathcal{M}. But this implies that the map QSQ\rightarrow S is a weak equivalence in \mathcal{L}\mathcal{M}, because \mathcal{L}\mathcal{M} is right proper.

For Fact 2, suppose the localization is semi-left exact, let f:ABf\colon A\rightarrow B be a fibration and g:CBg\colon C\rightarrow B be a weak equivalence in \mathcal{L}\mathcal{M}. Without loss of generality we can assume that BB is fibrant in \mathcal{L}\mathcal{M}. Then the map PQP\rightarrow Q is a weak equivalence in \mathcal{M} by right properness of \mathcal{M} and fibrancy of ff. Also, because BB was assumed to be local, so are B\mathbb{R}B and hence A\mathbb{R}A, thus the map QSQ\rightarrow S is a weak equivalence by semi-left exactness of the localization. So all diagonal arrows in the diagram are weak equivalences in \mathcal{L}\mathcal{M}. Since gg was assumed to be a weak equivalence, by 2-for-3, the map Lg\mathbb{R}_L g is an acyclic fibration. Therefore, so is S LAS\rightarrow \mathbb{R}_L A. But then, again by 2-for-3, the map f *g:PAf^{\ast}g\colon P\rightarrow A is a weak equivalence in \mathcal{L}\mathcal{M}.

The other direction follows immediately from Fact 1.

A few comments on Facts 1 and 2.

  • Fact 2 was also observed by Balchin and Garner in Bousfield localisation and colocalisation of one-dimensional model structures for 1-dimensional model categories. Their lemma is a special case as 1-dimensional model categories are always right proper.
  • Fact 2 is intuitive in the sense that right properness assures that ordinary pullbacks along fibrations between fibrant objects are homotopy pullbacks, and both model categories \mathcal{M} and \mathcal{L}\mathcal{M} have the same underlying ordinary categorical structure. Fact 1 on the contrary states no compatibility conditions between 1-categorical and higher categorical structure in \mathcal{M} or \mathcal{L}\mathcal{M} and neither does it state any conditions which relate right properness and universal homotopy colimits.
  • We have argued above that semi-left exactness and universality of homotopy colimits in the localized model structure are equivalent under some conditions, and it is interesting to note that a similar but stronger relationship between semi-left exactness and right properness is given by Facts (1) and (2).
  • In the last post it was noted that every locally cartesian closed (,1)(\infty,1)-category is presented by a right proper Cisinski model category, obtained as left Bousfield localization of a simplicial presheaf category equipped with the injective model structure. But we note that the connection between right properness and local cartesian closedness in this case is in fact a connection between right properness and semi-left exactness of the localization. The two latter properties just are equivalent in this case.

So we see that right properness of such “standard” presentations T(sPsh())\mathcal{L}_T(\mathrm{sPsh}(\mathbb{C})) is not a peculiarity of Cisinskiness, since a simplicial presheaf category equipped with any model structure \mathcal{M} with pointwise weak equivalences is right proper (thanks to Karol Szumilo for making me aware of this), and hence so is any model category obtained from \mathcal{M} by semi-left exact localization.

Recalling that Dugger observed that the projective model structure enjoys a “cofibrancy” status that the injective model structure generally does not, we can vary the observation from the last post (which also was rigorously stated in Theorem 7.1 of Gepner and Kock’s paper) as follows.

Let \mathcal{M} be a combinatorial model category. Then there is a simplicial category \mathbb{C}, a set TsPsh()T\subset \mathrm{sPsh}(\mathbb{C}) of maps and a Quillen equivalence T(sPsh()) proj\mathcal{L}_T(\mathrm{sPsh}(\mathbb{C}))_{\mathrm{proj}}\simeq\mathcal{M} such that TsPsh()\mathcal{L}_T\mathrm{sPsh}(\mathbb{C}) is right proper if and only if \mathcal{M} has universal homotopy colimits.

As a corollary we see that right properness is homotopy invariant among such “standard” presentations of combinatorial model categories. More precisely, for ,𝔻\mathbb{C},\mathbb{D} small simplicial categories, let sPsh()\mathrm{sPsh}(\mathbb{C}) and sPsh(𝔻)\mathrm{sPsh}(\mathbb{D}) be equipped with any model structure with pointwise weak equivalences. Let F:sPsh()sPsh(𝔻)F\colon\mathrm{sPsh}(\mathbb{C})\simeq\mathrm{sPsh}(\mathbb{D}) be a Quillen equivalence and S,TS,T be sets of maps such that FF descends to a Quillen equivalence F: SsPsh() TsPsh(𝔻)F\colon\mathcal{L}_S\mathrm{sPsh}(\mathbb{C})\simeq\mathcal{L}_T\mathrm{sPsh}(\mathbb{D}). Then SsPsh()\mathcal{L}_S\mathrm{sPsh}(\mathbb{C}) is right proper iff TsPsh(𝔻)\mathcal{L}_T\mathrm{sPsh}(\mathbb{D}) is right proper.

Posted at April 29, 2019 7:43 PM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/3110

16 Comments & 0 Trackbacks

Re: Right Properness of Left Bousfield Localizations

Thanks for this! I’m starting to feel like I understand more about what right properness means. Now if only we could understand right properness of model categories that aren’t localizations…

This also may be the first n-Café post to make use of the new tikz/tikzcd functionality.

Posted by: Mike Shulman on April 29, 2019 8:04 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

I don’t see any pictures or commutative diagrams!

Posted by: John Baez on April 29, 2019 9:57 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

I see no image above in Firefox (up to date) on macOS Mojave. However, if I log into the admin part of this site and view the preview then I see the image! The preview uses different CSS, but switching off the CSS doesn’t seem to make any difference to the live version.

I can see the picture fine in Chrome or Safari.

Posted by: Simon Willerton on April 30, 2019 6:20 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

Uh-oh! So after “the following sequence of pullback squares” there is no picture for you and it goes right into “For Fact 1”?

Posted by: Mike Shulman on April 29, 2019 10:23 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

Looks good (i.e., what makes sense in context) using a Chrome browser:
there is a 2x1x1 diagram (counting arrows, not objects).

Posted by: Keith Harbaugh on April 29, 2019 11:15 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

I see it too, using an outdated version of Firefox on Linux.

Posted by: Tom Leinster on April 30, 2019 10:14 AM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

I see it fine on Firefox 66.0.2 on OS X 10.13.6 (High Sierra).

Posted by: Mike Stay on April 30, 2019 6:37 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

I don’t see the diagrams at all on Firefox 66.0.3 (64-bit) on Windows.

Posted by: John Baez on April 30, 2019 11:00 PM | Permalink | Reply to this

Browsers

I would say, “Let’s make a list of browsers that work/don’t work.”

But, already, I see inconsistencies.

Both Simon and I tried Firefox 66.0.3 (64-bit) on macOS 10.14.4.

  • I see the figures, but
  • he doesn’t.

IIUC, the people who are having trouble are a (still to be properly-characterized) subset of Firefox users. Everyone else (using Chrome, Safari, … whatever) sees the figures?

Mike linked to some other pages containing Tikz figures. Can the people, who are having trouble over here, see the figures over there?

Posted by: Jacques Distler on May 1, 2019 7:56 AM | Permalink | PGP Sig | Reply to this

Re: Right Properness of Left Bousfield Localizations

Jacques suggests that those who don’t see these diagrams check whether they also can’t see the diagrams on this page.

Posted by: Mike Shulman on April 30, 2019 11:22 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

Are we supposed to be able to use tikz in comments?

Posted by: Mike Stay on April 30, 2019 6:43 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

Ah! Don’t put your tikz inside of math mode (duh).

    


















































  


  


  


  


  


  


  


  
  
  


  


  


  


  
  


  


  


  


  


  
  


  




  


  


  


  


  


  
  


  


  


  


  


  
  


  


  


  




  


  


  
  
  


  


  


  


  


  


  


  


  




  


  


  


  


  


  
  


  


  


  


  


  
  


  


  


  




  


  


  


  


  
  


  


  


  


  


  
  




  


  


  


  


  


  


  


  


  


  
  
  




  


  


  


  


  
  


  


  


  


  


  
  




  


  


  


  


  


  


  
  


  


  


  


  


  
  


  


  




  


  




  


  


  
  
  


  


  


  


  


  


  


  




  


  


  


  


  




  


  


  


  


  


  


  
  
  


  


  


  




  


  


  


  


  




  


  


  
  


  


  


  
  


  


  


  
  




  




  


  




  


  


  


  


  


  


  


  


  


  


  



Seems to work great!

Posted by: Mike Stay on April 30, 2019 6:50 PM | Permalink | Reply to this

Re: Right Properness of Left Bousfield Localizations

Don’t put your tikz inside of math mode (duh).

If all you want to do is center the figure, try


<p style='text-align: center; margin: auto;'>
\begin{tikzpicture}
...
\end{tikzpicture}
</p>

If you really want to mix math and graphics in a nontrivial way, there’s always the built-in WYSIWYG SVG-Edit editor.

Posted by: Jacques Distler on May 1, 2019 8:06 AM | Permalink | PGP Sig | Reply to this

Re: Right Properness of Left Bousfield Localizations

This is really cool!

The key step in Fact 1 is to observe that if X,YX,Y are local-fibrant objects, then a map XYX \to Y is a local fibration if and only if it is a global fibration. I’m drawing a blank on why this is so. Would anybody care to give me a remedial lesson in Bousfield localization and explain this?

Posted by: Tim Campion on May 6, 2019 8:54 PM | Permalink | Reply to this

The non-trivial direction follows by a factorisation and retract argument from the fact that a local weak equivalence between local fibrant objects is a global weak equivalence; see for instance Proposition 7.21 in Joyal and Tierney’s Quasi-categories vs Segal spaces.

Posted by: Alexander Campbell on May 7, 2019 2:24 PM | Permalink | Reply to this

Re:

Ah, of course! Thanks.

Posted by: Tim Campion on May 7, 2019 6:35 PM | Permalink | Reply to this

Post a New Comment