Define
Li 2 ( z ) ≔ ∑ n ≥ 1 z n n 2 , | z | < 1
\operatorname{Li}_2(z) \coloneqq \sum_{n\geq 1} \frac{z^n}{n^2},\qquad |z|\lt 1
More generally, the polylogarithm m = 1 , 2 , … m=1,2,\dots
Li m ( z ) ≔ ∑ n ≥ 1 z n n m , | z | < 1
\operatorname{Li}_m(z) \coloneqq \sum_{n\geq 1} \frac{z^n}{n^m},\qquad |z|\lt 1
Note that
Li 1 ( z ) = − log ( 1 − z )
\operatorname{Li}_1(z) = -\log(1-z)
and
d d z Li m ( z ) = Li m − 1 ( z )
\frac{d}{d z} \operatorname{Li}_m(z) = \operatorname{Li}_{m-1}(z)
So we get an analytic continuation
Li 2 ( z ) = − ∫ 0 z log ( 1 − u ) d u u
\operatorname{Li}_2(z) = -\int_0^z \log(1-u) \frac{d u}{u}
where the path from 0 0 to z z is in ℂ ∖ [ 1 , ∞ ) \mathbb{C}\setminus [1,\infty)
Functional equations:
Li 1 ( 1 − x y ) = Li 1 ( 1 − x ) + Li 1 ( 1 − y ) Li 2 = 5 terms (Spence 1809, Abel 1828, ...)
\begin{gathered}
\operatorname{Li}_1(1-x y) = \operatorname{Li}_1(1-x) + \operatorname{Li}_1(1-y)\\
\operatorname{Li}_2 = \text{5 terms (Spence 1809, Abel 1828, ...)}
\end{gathered}
Monodromy (on Li 2 ( x ) , log ( x ) , 1 \operatorname{Li}_2(x),\log(x),1 )
γ 0 = ( 1 0 0 0 1 2 π i 0 0 1 ) , γ 1 = ( 1 − 2 π i 0 0 1 0 0 0 1 )
\gamma_0=\begin{pmatrix}1&0&0\\0&1&2\pi i\\0&0&1\end{pmatrix},
\gamma_1=\begin{pmatrix}1&-2\pi i&0\\0&1&0\\0&0&1\end{pmatrix}
generate a Heisenberg group
( 1 ℤ ( 1 ) ℤ ( 2 ) 0 1 ℤ ( 1 ) 0 0 1 )
\begin{pmatrix}1&\mathbb{Z}(1)&\mathbb{Z}(2)\\ 0&1&\mathbb{Z}(1)\\0&0&1\end{pmatrix}
Bloch-Wigner Dilogarithm
D ( z ) ≔ Im Li 2 ( z ) + arg ( 1 − z ) log | z |
D(z) \coloneqq \operatorname{Im} \operatorname{Li}_2(z) + \arg(1-z)\log|z|
is real-analytic in ℂ ∖ { 0 , 1 } \mathbb{C}\setminus\{0,1\} and continuous in ℂ \mathbb{C} .
D ( e i θ ) = ∑ n ≥ 1 sin n θ n 2 D ( z ¯ ) = − D ( z )
\begin{gathered}
D\left(e^{i\theta}\right) = \sum_{n\geq 1} \frac{\sin n\theta}{n^2}\\
D(\overline{z}) = - D(z)
\end{gathered}
hence vanishes on ℝ \mathbb{R} .
D ( z ) = D ( 1 − z − 1 ) = D ( ( 1 − z ) − 1 ) − D ( z − 1 ) = − D ( 1 − z ) = − D ( − z 1 − z )
\begin{split}
D(z)&= D\left(1-z^{-1}\right)= D\left({(1-z)}^{-1}\right)\\
& - D\left(z^{-1}\right) = - D(1-z) = -D\left(-\frac{z}{1-z}\right)
\end{split}
So we have a continuous real-vaued function on ℙ 1 ( ℂ ) \mathbb{P}^1(\mathbb{C}) with a maximum at z = ( 1 + − 3 ) / 2 z=(1+\sqrt{-3})/2 : D ( 1 + − 3 ) / 2 ) = 1.0149 … D(1+\sqrt{-3})/2)=1.0149\dots .
Define recursively
z n + 1 z n − 1 = 1 − z n
z_{n+1}z_{n-1} = 1-z_n
then z n + 5 = z n z_{n+5}=z_n . If we call z 0 = x z_0=x , z 1 = y z_1=y , then we find
x , y , 1 − y x , x + y − 1 xy , 1 − x y
x,y,\frac{1-y}{x},\frac{x+y-1}{xy},\frac{1-x}{y}
(Laurent phenomenon). (Cremona transformation of order 5 on ℙ 2 ( ℂ ) \mathbb{P}^2(\mathbb{C}) is ( x , y ) ↦ ( y , 1 − y x ) (x,y)\mapsto\left(y,\tfrac{1-y}{x}\right) .)
The 5-term recursion relation is
∑ j = 0 4 D ( z j ) = 0
\sum_{j=0}^4 D(z_j)=0
This can be explained geometrically.
Layer 1
0
0
1
1
z
z
∞
\infty
\begin{svg}
<svg width="803" height="302" xmlns="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" se:nonce="94701">
<g>
<title>Layer 1</title>
<path id="svg_94701_5" d="m208.5,93.625l-208,208l594,0l208.140259,-209.14032" stroke="#000000" fill="#ffeeee"/>
<path id="svg_94701_3" d="m323.25,11l0,207c18,-51 84,-54 99,0c10,-54.333344 33,-75.666656 51,-52l0,-152.857872" stroke-width="2" stroke="#000000" fill="#eeffff"/>
<line id="svg_94701_6" y2="217.021844" x2="422.25" y1="11" x1="422.25" stroke-width="2" stroke="#000000" fill="none"/>
<foreignObject height="18" width="14" font-size="16" id="svg_94701_7" y="218" x="316.25">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mn>0</mn>
</mrow>
<annotation encoding="application/x-tex">0</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject id="svg_94701_8" height="18" width="14" font-size="16" y="222" x="415.25">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mn>1</mn>
</mrow>
<annotation encoding="application/x-tex">1</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject id="svg_94701_14" height="20" width="14" font-size="16" y="171" x="467.25">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mi>z</mi>
</mrow>
<annotation encoding="application/x-tex">z</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject id="svg_94701_20" height="18" width="14" font-size="16" y="0" x="304.25">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mn>∞</mn>
</mrow>
<annotation encoding="application/x-tex">\infty</annotation>
</semantics>
</math>
</foreignObject>
</g>
</svg>
\end{svg}\includegraphics[width=602]{tetrahedron}
In hyperbolic space, an ideal tetrahedron, with vertices at 0 , 1 , ∞ , z 0,1,\infty,z , has volume D ( z ) D(z) . (z = 1 + − 3 2 z=\tfrac{1+\sqrt{-3}}{2} is the regular tetrahedron; more generally, z z is the cross ratio of the 4 vertices , which is invariant under PSL 2 ( ℂ ) = Isom ( ℍ ) PSL_2(\mathbb{C})=\operatorname{Isom}(\mathbb{H}) ) The 5-term recursion relation comes from taking 5 points in ℙ 1 ( ℂ ) \mathbb{P}^1(\mathbb{C}) and constructing five tetrahedra by taking the points 4 at a time
0 = ∑ j = 0 4 ( − 1 ) j Vol ( ( w 0 , … , w ^ j , … , w 4 ) )
0 = \sum_{j=0}^4 {(-1)}^{j}\operatorname{Vol}((w_0,\dots,\hat{w}_j,\dots,w_4))
The cancellation is the 3-2 Pachner move.
Layer 2
Layer 1
C
C
A
A
B
B
A
A
B
B
A
'
A'
A
'
A'
a
a
c
c
b
b
c
c
a
a
a
'
a'
a
'
a'
b
'
b'
b
b
c
'
c'
c
'
c'
B
'
B'
B
'
B'
b
'
b'
\begin{svg}<svg width="240" height="250" xmlns="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" se:nonce="1192">
<g>
<title>Layer 2</title>
<path fill="none" stroke="#0000ff" stroke-width="2" d="m203.632599,155.024902l9.980377,7.562393l-6.336456,10.908295" id="svg_1192_9" transform="rotate(-143.842, 208.623, 164.259)"/>
<path fill="none" stroke="#0000ff" stroke-width="2" d="m201.017426,71.585327l9.468994,8.20385l-7.262848,11.587776" id="svg_1192_11" transform="rotate(149.349, 205.752, 81.4812)"/>
<path fill="none" stroke="#0000ff" stroke-width="2" d="m102.508148,34.318008l6.24678,6.765732l-4.141541,6.414501" id="svg_1192_10" transform="rotate(76.4296, 105.632, 40.9066)"/>
<path fill="none" stroke="#0000ff" stroke-width="2" d="m46.074718,139.976669l8.902531,6.672256l-5.902531,9.327744" id="svg_1192_7" transform="rotate(2.43666, 50.5259, 147.977)"/>
<path fill="none" stroke="#0000ff" stroke-width="2" d="m106.677193,204.135712l10.311234,6.958557l-6.748878,11.124786" id="svg_1192_8" transform="rotate(-64.8852, 111.832, 213.176)"/>
</g>
<g>
<title>Layer 1</title>
<path fill="none" stroke="#000000" stroke-width="2" d="m0.9997,83.9617c25.147851,99.815475 160.403376,144.391083 238.297877,68.521545" id="svg_1192_3"/>
<path fill="none" stroke="#000000" stroke-width="2" d="m280.548462,128.498505c-67.919983,-77.345005 -208.61499,-55.296997 -243.310303,47.756989" transform="rotate(70.1023, 158.893, 129.232)" id="svg_1192_6"/>
<path fill="none" stroke="#000000" stroke-width="2" d="m141.741013,1c-89.299133,51.198318 -95.646103,193.468353 -1.541626,247.949371" id="svg_1192_1"/>
<path fill="none" stroke="#000000" stroke-width="2" d="m246.517212,125.435997c-67.919983,-77.344997 -208.61499,-55.296997 -243.310292,47.756996" id="svg_1192_4" transform="rotate(-19.7826, 124.861, 126.17)"/>
<path fill="none" stroke="#000000" stroke-width="2" d="m257.517212,154.436005c-67.919983,-77.345001 -208.61499,-55.296997 -243.310292,47.756989" id="svg_1192_5" transform="rotate(145.579, 135.861, 155.17)"/>
<foreignObject x="15.824219" y="140" id="svg_1192_12" font-size="16" width="20" height="20">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>C</mi>
</mrow>
<annotation encoding="application/x-tex">C</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="54.324219" y="85" font-size="16" width="20" height="20" id="svg_1192_13">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>A</mi>
</mrow>
<annotation encoding="application/x-tex">A</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="64.990885" y="172.333333" font-size="16" width="20" height="20" id="svg_1192_19">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>B</mi>
</mrow>
<annotation encoding="application/x-tex">B</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="170.324219" y="146" font-size="16" width="20" height="20" id="svg_1192_25">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>A</mi>
</mrow>
<annotation encoding="application/x-tex">A</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="176.990885" y="93.333333" font-size="16" width="20" height="20" id="svg_1192_31">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>B</mi>
</mrow>
<annotation encoding="application/x-tex">B</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="137.324219" y="205" font-size="16" width="20" height="20" id="svg_1192_37">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>A</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">A'</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="215.324219" y="93" font-size="16" width="20" height="20" id="svg_1192_43">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>A</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">A'</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="47.824219" y="159" id="svg_1192_50" font-size="16" width="14" height="20">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>a</mi>
</mrow>
<annotation encoding="application/x-tex">a</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="74.824219" y="128" font-size="16" width="14" height="20" id="svg_1192_51">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>c</mi>
</mrow>
<annotation encoding="application/x-tex">c</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="41.824219" y="105" font-size="16" width="14" height="20" id="svg_1192_57">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>b</mi>
</mrow>
<annotation encoding="application/x-tex">b</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="208.824219" y="112" font-size="16" width="14" height="20" id="svg_1192_69">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>c</mi>
</mrow>
<annotation encoding="application/x-tex">c</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="186.824219" y="178" font-size="16" width="14" height="20" id="svg_1192_75">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>a</mi>
</mrow>
<annotation encoding="application/x-tex">a</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="115.949219" y="167.875" font-size="16" width="14" height="20" id="svg_1192_81">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>a</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">a'</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="168.449219" y="46.375" font-size="16" width="14" height="20" id="svg_1192_87">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>a</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">a'</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="115.324219" y="76" font-size="16" width="14" height="20" id="svg_1192_94">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>b</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">b'</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="190.324219" y="49.5" font-size="16" width="14" height="20" id="svg_1192_100">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>b</mi>
</mrow>
<annotation encoding="application/x-tex">b</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="69.824219" y="55" font-size="16" width="14" height="20" id="svg_1192_106">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>c</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">c'</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="76.824219" y="194.5" font-size="16" width="14" height="20" id="svg_1192_112">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>c</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">c'</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="137.490885" y="27.333333" font-size="16" width="20" height="20" id="svg_1192_119">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>B</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">B'</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="214.490885" y="132.333333" font-size="16" width="20" height="20" id="svg_1192_125">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>B</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">B'</annotation>
</semantics>
</math>
</foreignObject>
<path fill="none" stroke="#ff0000" stroke-width="2" d="m73.324219,106.5c-12.416668,9.833328 -26.583328,28.916672 -33,42.75c11.25,11.166672 32.25,24.833328 40.25,27.5c-6.583351,-14 -10.416672,-51 -7.25,-70.25z" id="svg_1192_132"/>
<foreignObject id="svg_1192_2" x="166.324219" y="185" font-size="16" width="14" height="20">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>b</mi>
<mo>'</mo>
</mrow>
<annotation encoding="application/x-tex">b'</annotation>
</semantics>
</math>
</foreignObject>
</g>
</svg>
\end{svg}\includegraphics[width=180]{pentagon}
Napier : Mirifici logorithorum canonis descriptio
Rule of circular parts
Spherical trigonometry (navigation mathematics): 6 quantities (3 angles + 3 lengths or, equivalently, 6 angles). Fix one to be π / 2 \pi/2 .
Parametrize parts wiith cross ratios of 4 points taken out of 5. The sides of the pentagon are A , B , b ′ , c , a ′ A,B,b',c,a' .
Any equation among the parts remains valid after a cyclic permutation around the pentagon. Denote the five triangles by ( a i , B i , c i , A i , b i ) (a_i, B_i, c_i, A_i, b_i) , i = 0 , 1 , … , 4 i=0,1,\dots,4 , with ( a 0 , B 0 , c 0 , A 0 , b 0 ) ≡ ( a , B , c , A , b ) (a_0, B_0, c_0, A_0, b_0)\equiv(a, B, c, A, b) . Under a cyclic permutation
( a , B , c , A , A , b ) ↦ ( a 1 , B 1 , c 1 , A 1 , b 1 ) = ( A ′ , b ′ , a ′ , B , c ′ )
(a,B,c,A,A,b)\mapsto (a_1,B_1,c_1,A_1,b_1) = (A',b',a',B,c')
and
( a , B ′ , c ′ , A ′ , b ) ↦ ( A ′ , b , a , B ′ , c ′ )
(a,B',c',A',b)\mapsto (A',b,a,B',c')
Triangle can be solved if any two parts are known
sin a = tan b tan B ′ = cos A ′ cos c ′
\sin a =\tan b \tan B' = \cos A' \cos c'
The surface
S : { 1 − z 1 = z 2 z 0 1 − z 2 = z 3 z 1 ⋮ 1 − z 0 = z 1 z 4 Aut ( S ) ≃ S 5
S: \left\{\begin{gathered}1-z_1=z_2z_0\\ 1-z_2=z_3z_1\\ \vdots\\ 1-z_0 = z_1z_4 \end{gathered}\right.
\qquad
\operatorname{Aut}(S)\simeq S_5
is a del Pezzo surface of degree 5.
∑ j = 0 4 z j = 3 − s , − s = ∏ j = 0 4 z j Schöne Gleichung ( 1 − x ) ( 1 − y ) ( 1 − x − y ) − s xy = 0
\begin{gathered}
\sum_{j=0}^4 z_j = 3-s,\quad -s=\prod_{j=0}^4 z_j\qquad\text{Schöne Gleichung}\\
(1-x)(1-y)(1-x-y) -s xy =0
\end{gathered}
universal elliptic curve with a 5-torsion point x 1 ( 5 ) x_1(5) .
Coxeter: 5-cycle
transmitted as mathematical gossip for a long time.
Number Theory
Li 2 ( 1 ) = ζ ( 2 ) = π 2 6 (Euler 1768)
\operatorname{Li}_2(1)=\zeta(2) = \frac{\pi^2}{6}\qquad\text{(Euler 1768)}
More generally,
L ( χ , 2 ) = ∑ n ≥ 1 χ ( n ) n 2 χ : ( ℤ / N ℤ ) × → ℂ × Dirichlet character
\begin{gathered}
L(\chi,2) = \sum_{n\geq 1} \frac{\chi(n)}{n^2}\\
\chi\colon {(\mathbb{Z}/N\mathbb{Z})}^\times \to \mathbb{C}^\times \qquad\text{Dirichlet character}
\end{gathered}