\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{tikz} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \Decl@Mn@Open{\llbracket}{stmry}{'112} \Decl@Mn@Close{\rrbracket}{stmry}{'113} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{The Dilogarithm Function} Define \begin{displaymath} \operatorname{Li}_2(z) \coloneqq \sum_{n\geq 1} \frac{z^n}{n^2},\qquad |z|\lt 1 \end{displaymath} More generally, the polylogarithm $m=1,2,\dots$ \begin{displaymath} \operatorname{Li}_m(z) \coloneqq \sum_{n\geq 1} \frac{z^n}{n^m},\qquad |z|\lt 1 \end{displaymath} Note that \begin{displaymath} \operatorname{Li}_1(z) = -\log(1-z) \end{displaymath} and \begin{displaymath} \frac{d}{d z} \operatorname{Li}_m(z) = \operatorname{Li}_{m-1}(z) \end{displaymath} So we get an analytic continuation \begin{displaymath} \operatorname{Li}_2(z) = -\int_0^z \log(1-u) \frac{d u}{u} \end{displaymath} where the path from $0$ to $z$ is in $\mathbb{C}\setminus [1,\infty)$ Functional equations: \begin{displaymath} \begin{gathered} \operatorname{Li}_1(1-x y) = \operatorname{Li}_1(1-x) + \operatorname{Li}_1(1-y)\\ \operatorname{Li}_2 = \text{5 terms (Spence 1809, Abel 1828, ...)} \end{gathered} \end{displaymath} Monodromy (on $\operatorname{Li}_2(x),\log(x),1$) \begin{displaymath} \gamma_0=\begin{pmatrix}1&0&0\\0&1&2\pi i\\0&0&1\end{pmatrix}, \gamma_1=\begin{pmatrix}1&-2\pi i&0\\0&1&0\\0&0&1\end{pmatrix} \end{displaymath} generate a Heisenberg group \begin{displaymath} \begin{pmatrix}1&\mathbb{Z}(1)&\mathbb{Z}(2)\\ 0&1&\mathbb{Z}(1)\\0&0&1\end{pmatrix} \end{displaymath} \hypertarget{Bloch-Wigner}{}\subsection*{{Bloch-Wigner Dilogarithm}}\label{Bloch-Wigner} \begin{displaymath} D(z) \coloneqq \operatorname{Im} \operatorname{Li}_2(z) + \arg(1-z)\log|z| \end{displaymath} is real-analytic in $\mathbb{C}\setminus\{0,1\}$ and continuous in $\mathbb{C}$. \begin{displaymath} \begin{gathered} D\left(e^{i\theta}\right) = \sum_{n\geq 1} \frac{\sin n\theta}{n^2}\\ D(\overline{z}) = - D(z) \end{gathered} \end{displaymath} hence vanishes on $\mathbb{R}$. \begin{displaymath} \begin{split} D(z)&= D\left(1-z^{-1}\right)= D\left({(1-z)}^{-1}\right)\\ & - D\left(z^{-1}\right) = - D(1-z) = -D\left(-\frac{z}{1-z}\right) \end{split} \end{displaymath} So we have a continuous real-vaued function on $\mathbb{P}^1(\mathbb{C})$ with a maximum at $z=(1+\sqrt{-3})/2$: $D(1+\sqrt{-3})/2)=1.0149\dots$. Define recursively \begin{displaymath} z_{n+1}z_{n-1} = 1-z_n \end{displaymath} then $z_{n+5}=z_n$. If we call $z_0=x$, $z_1=y$, then we find \begin{displaymath} x,y,\frac{1-y}{x},\frac{x+y-1}{xy},\frac{1-x}{y} \end{displaymath} (Laurent phenomenon). (Cremona transformation of order 5 on $\mathbb{P}^2(\mathbb{C})$ is $(x,y)\mapsto\left(y,\tfrac{1-y}{x}\right)$.) The 5-term recursion relation is \begin{displaymath} \sum_{j=0}^4 D(z_j)=0 \end{displaymath} This can be explained geometrically. \begin{displaymath} \includegraphics[width=602]{tetrahedron} \end{displaymath} In hyperbolic space, an ideal tetrahedron, with vertices at $0,1,\infty,z$, has volume $D(z)$. ($z=\tfrac{1+\sqrt{-3}}{2}$ is the regular tetrahedron; more generally, $z$ is the cross ratio of the 4 vertices , which is invariant under $PSL_2(\mathbb{C})=\operatorname{Isom}(\mathbb{H})$) The 5-term recursion relation comes from taking 5 points in $\mathbb{P}^1(\mathbb{C})$ and constructing five tetrahedra by taking the points 4 at a time \begin{displaymath} 0 = \sum_{j=0}^4 {(-1)}^{j}\operatorname{Vol}((w_0,\dots,\hat{w}_j,\dots,w_4)) \end{displaymath} The cancellation is the 3-2 Pachner move. \begin{displaymath} \includegraphics[width=180]{pentagon} \end{displaymath} \textbf{Napier}: \emph{Mirifici logorithorum canonis descriptio} Rule of circular parts Spherical trigonometry (navigation mathematics): 6 quantities (3 angles + 3 lengths or, equivalently, 6 angles). Fix one to be $\pi/2$. Parametrize parts wiith cross ratios of 4 points taken out of 5. The sides of the pentagon are $A,B,b',c,a'$. Any equation among the parts remains valid after a cyclic permutation around the pentagon. Denote the five triangles by $(a_i, B_i, c_i, A_i, b_i)$, $i=0,1,\dots,4$, with $(a_0, B_0, c_0, A_0, b_0)\equiv(a, B, c, A, b)$. Under a cyclic permutation \begin{displaymath} (a,B,c,A,A,b)\mapsto (a_1,B_1,c_1,A_1,b_1) = (A',b',a',B,c') \end{displaymath} and \begin{displaymath} (a,B',c',A',b)\mapsto (A',b,a,B',c') \end{displaymath} Triangle can be solved if any two parts are known \begin{displaymath} \sin a =\tan b \tan B' = \cos A' \cos c' \end{displaymath} The surface \begin{displaymath} S: \left\{\begin{gathered}1-z_1=z_2z_0\\ 1-z_2=z_3z_1\\ \vdots\\ 1-z_0 = z_1z_4 \end{gathered}\right. \qquad \operatorname{Aut}(S)\simeq S_5 \end{displaymath} is a del Pezzo surface of degree 5. \begin{displaymath} \begin{gathered} \sum_{j=0}^4 z_j = 3-s,\quad -s=\prod_{j=0}^4 z_j\qquad\text{Schöne Gleichung}\\ (1-x)(1-y)(1-x-y) -s xy =0 \end{gathered} \end{displaymath} universal elliptic curve with a 5-torsion point $x_1(5)$. Coxeter: 5-cycle transmitted as mathematical gossip for a long time. \hypertarget{number_theory}{}\subsubsection*{{Number Theory}}\label{number_theory} \begin{displaymath} \operatorname{Li}_2(1)=\zeta(2) = \frac{\pi^2}{6}\qquad\text{(Euler 1768)} \end{displaymath} More generally, \begin{displaymath} \begin{gathered} L(\chi,2) = \sum_{n\geq 1} \frac{\chi(n)}{n^2}\\ \chi\colon {(\mathbb{Z}/N\mathbb{Z})}^\times \to \mathbb{C}^\times \qquad\text{Dirichlet character} \end{gathered} \end{displaymath} \end{document}