\documentclass[12pt,titlepage]{article}

\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{color}
\usepackage{ucs}
\usepackage[utf8x]{inputenc}
\usepackage{xparse}
\usepackage{tikz}
\usepackage{hyperref}

%----Macros----------
%
% Unresolved issues:
%
%  \righttoleftarrow
%  \lefttorightarrow
%
%  \color{} with HTML colorspec
%  \bgcolor
%  \array with options (without options, it's equivalent to the matrix environment)

% Of the standard HTML named colors, white, black, red, green, blue and yellow
% are predefined in the color package. Here are the rest.
\definecolor{aqua}{rgb}{0, 1.0, 1.0}
\definecolor{fuschia}{rgb}{1.0, 0, 1.0}
\definecolor{gray}{rgb}{0.502, 0.502, 0.502}
\definecolor{lime}{rgb}{0, 1.0, 0}
\definecolor{maroon}{rgb}{0.502, 0, 0}
\definecolor{navy}{rgb}{0, 0, 0.502}
\definecolor{olive}{rgb}{0.502, 0.502, 0}
\definecolor{purple}{rgb}{0.502, 0, 0.502}
\definecolor{silver}{rgb}{0.753, 0.753, 0.753}
\definecolor{teal}{rgb}{0, 0.502, 0.502}

% Because of conflicts, \space and \mathop are converted to
% \itexspace and \operatorname during preprocessing.

% itex: \space{ht}{dp}{wd}
%
% Height and baseline depth measurements are in units of tenths of an ex while
% the width is measured in tenths of an em.
\makeatletter
\newdimen\itex@wd%
\newdimen\itex@dp%
\newdimen\itex@thd%
\def\itexspace#1#2#3{\itex@wd=#3em%
\itex@wd=0.1\itex@wd%
\itex@dp=#2ex%
\itex@dp=0.1\itex@dp%
\itex@thd=#1ex%
\itex@thd=0.1\itex@thd%
\advance\itex@thd\the\itex@dp%
\makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}}
\makeatother

% \tensor and \multiscript
\makeatletter
\newif\if@sup
\newtoks\@sups
\def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}%
\def\reset@sup{\@supfalse\@sups={}}%
\def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else%
  \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}%
  \else \append@sup#2 \@suptrue \fi%
  \expandafter\mk@scripts\fi}
\def\tensor#1#2{\reset@sup#1\mk@scripts#2_/}
\def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2%
  \reset@sup\mk@scripts#3_/}
\makeatother

% \slash
\makeatletter
\newbox\slashbox \setbox\slashbox=\hbox{$/$}
\def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$}
  \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa
  \copy\slashbox \kern-\@tempdima \box\@tempboxa}
\def\slash{\protect\itex@pslash}
\makeatother

% math-mode versions of \rlap, etc
% from Alexander Perlis, "A complement to \smash, \llap, and lap"
%   http://math.arizona.edu/~aprl/publications/mathclap/
\def\clap#1{\hbox to 0pt{\hss#1\hss}}
\def\mathllap{\mathpalette\mathllapinternal}
\def\mathrlap{\mathpalette\mathrlapinternal}
\def\mathclap{\mathpalette\mathclapinternal}
\def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}}
\def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}}
\def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}}

% Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2}
\let\oldroot\root
\def\root#1#2{\oldroot #1 \of{#2}}
\renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}}

% Manually declare the txfonts symbolsC font
\DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n}
\SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n}
\DeclareFontSubstitution{U}{txsyc}{m}{n}

% Manually declare the stmaryrd font
\DeclareSymbolFont{stmry}{U}{stmry}{m}{n}
\SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n}

% Manually declare the MnSymbolE font
\DeclareFontFamily{OMX}{MnSymbolE}{}
\DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n}
\SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n}
\DeclareFontShape{OMX}{MnSymbolE}{m}{n}{
    <-6>  MnSymbolE5
   <6-7>  MnSymbolE6
   <7-8>  MnSymbolE7
   <8-9>  MnSymbolE8
   <9-10> MnSymbolE9
  <10-12> MnSymbolE10
  <12->   MnSymbolE12}{}

% Declare specific arrows from txfonts without loading the full package
\makeatletter
\def\re@DeclareMathSymbol#1#2#3#4{%
    \let#1=\undefined
    \DeclareMathSymbol{#1}{#2}{#3}{#4}}
\re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116}
\re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116}
\re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117}
\re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117}
\re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118}
\re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118}
\re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119}
\re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119}
\re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46}
\re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121}
\re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121}
\re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12}
\re@DeclareMathSymbol{\boxslash}{\mathrel}{stmry}{27}
\re@DeclareMathSymbol{\boxbslash}{\mathrel}{stmry}{28}
\re@DeclareMathSymbol{\boxast}{\mathrel}{stmry}{24}
\re@DeclareMathSymbol{\boxcircle}{\mathrel}{stmry}{29}
\re@DeclareMathSymbol{\boxbox}{\mathrel}{stmry}{30}
\re@DeclareMathSymbol{\obslash}{\mathrel}{stmry}{20}
\re@DeclareMathSymbol{\obar}{\mathrel}{stmry}{58}
\re@DeclareMathSymbol{\olessthan}{\mathrel}{stmry}{60}
\re@DeclareMathSymbol{\ogreaterthan}{\mathrel}{stmry}{61}
\re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64}
\re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6}
\re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77}
\re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77}
\makeatother

% \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE
\makeatletter
\def\Decl@Mn@Delim#1#2#3#4{%
  \if\relax\noexpand#1%
    \let#1\undefined
  \fi
  \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}}
\def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}}
\def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}}
\Decl@Mn@Open{\llangle}{mnomx}{'164}
\Decl@Mn@Close{\rrangle}{mnomx}{'171}
\Decl@Mn@Open{\lmoustache}{mnomx}{'245}
\Decl@Mn@Close{\rmoustache}{mnomx}{'244}
\Decl@Mn@Open{\llbracket}{stmry}{'112}
\Decl@Mn@Close{\rrbracket}{stmry}{'113}
\makeatother

% Widecheck
\makeatletter
\DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}}
\def\@widecheck#1#2{%
    \setbox\z@\hbox{\m@th$#1#2$}%
    \setbox\tw@\hbox{\m@th$#1%
       \widehat{%
          \vrule\@width\z@\@height\ht\z@
          \vrule\@height\z@\@width\wd\z@}$}%
    \dp\tw@-\ht\z@
    \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@
    \setbox\tw@\hbox{%
       \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box
\tw@}}}%
    {\ooalign{\box\tw@ \cr \box\z@}}}
\makeatother

% \mathraisebox{voffset}[height][depth]{something}
\makeatletter
\NewDocumentCommand\mathraisebox{moom}{%
\IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{%
\IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}%
}{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}%
\mathpalette\@temp{#4}}
\makeatletter

% udots (taken from yhmath)
\makeatletter
\def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.}
\mkern2mu\raise4\p@\hbox{.}\mkern1mu
\raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}}
\makeatother

%% Fix array
\newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}}
%% \itexnum is a noop
\newcommand{\itexnum}[1]{#1}

%% Renaming existing commands
\newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}}
\newcommand{\widevec}{\overrightarrow}
\newcommand{\darr}{\downarrow}
\newcommand{\nearr}{\nearrow}
\newcommand{\nwarr}{\nwarrow}
\newcommand{\searr}{\searrow}
\newcommand{\swarr}{\swarrow}
\newcommand{\curvearrowbotright}{\curvearrowright}
\newcommand{\uparr}{\uparrow}
\newcommand{\downuparrow}{\updownarrow}
\newcommand{\duparr}{\updownarrow}
\newcommand{\updarr}{\updownarrow}
\newcommand{\gt}{>}
\newcommand{\lt}{<}
\newcommand{\map}{\mapsto}
\newcommand{\embedsin}{\hookrightarrow}
\newcommand{\Alpha}{A}
\newcommand{\Beta}{B}
\newcommand{\Zeta}{Z}
\newcommand{\Eta}{H}
\newcommand{\Iota}{I}
\newcommand{\Kappa}{K}
\newcommand{\Mu}{M}
\newcommand{\Nu}{N}
\newcommand{\Rho}{P}
\newcommand{\Tau}{T}
\newcommand{\Upsi}{\Upsilon}
\newcommand{\omicron}{o}
\newcommand{\lang}{\langle}
\newcommand{\rang}{\rangle}
\newcommand{\Union}{\bigcup}
\newcommand{\Intersection}{\bigcap}
\newcommand{\Oplus}{\bigoplus}
\newcommand{\Otimes}{\bigotimes}
\newcommand{\Wedge}{\bigwedge}
\newcommand{\Vee}{\bigvee}
\newcommand{\coproduct}{\coprod}
\newcommand{\product}{\prod}
\newcommand{\closure}{\overline}
\newcommand{\integral}{\int}
\newcommand{\doubleintegral}{\iint}
\newcommand{\tripleintegral}{\iiint}
\newcommand{\quadrupleintegral}{\iiiint}
\newcommand{\conint}{\oint}
\newcommand{\contourintegral}{\oint}
\newcommand{\infinity}{\infty}
\newcommand{\bottom}{\bot}
\newcommand{\minusb}{\boxminus}
\newcommand{\plusb}{\boxplus}
\newcommand{\timesb}{\boxtimes}
\newcommand{\intersection}{\cap}
\newcommand{\union}{\cup}
\newcommand{\Del}{\nabla}
\newcommand{\odash}{\circleddash}
\newcommand{\negspace}{\!}
\newcommand{\widebar}{\overline}
\newcommand{\textsize}{\normalsize}
\renewcommand{\scriptsize}{\scriptstyle}
\newcommand{\scriptscriptsize}{\scriptscriptstyle}
\newcommand{\mathfr}{\mathfrak}
\newcommand{\statusline}[2]{#2}
\newcommand{\tooltip}[2]{#2}
\newcommand{\toggle}[2]{#2}

% Theorem Environments
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{prop}{Proposition}
\newtheorem{cor}{Corollary}
\newtheorem*{utheorem}{Theorem}
\newtheorem*{ulemma}{Lemma}
\newtheorem*{uprop}{Proposition}
\newtheorem*{ucor}{Corollary}
\theoremstyle{definition}
\newtheorem{defn}{Definition}
\newtheorem{example}{Example}
\newtheorem*{udefn}{Definition}
\newtheorem*{uexample}{Example}
\theoremstyle{remark}
\newtheorem{remark}{Remark}
\newtheorem{note}{Note}
\newtheorem*{uremark}{Remark}
\newtheorem*{unote}{Note}

%-------------------------------------------------------------------

\begin{document}

%-------------------------------------------------------------------

\section*{The Dilogarithm Function}

Define

\begin{displaymath}
\operatorname{Li}_2(z) \coloneqq \sum_{n\geq 1} \frac{z^n}{n^2},\qquad |z|\lt 1
\end{displaymath}
More generally, the polylogarithm $m=1,2,\dots$

\begin{displaymath}
\operatorname{Li}_m(z) \coloneqq \sum_{n\geq 1} \frac{z^n}{n^m},\qquad |z|\lt 1
\end{displaymath}
Note that

\begin{displaymath}
\operatorname{Li}_1(z) = -\log(1-z)
\end{displaymath}
and

\begin{displaymath}
\frac{d}{d z} \operatorname{Li}_m(z) = \operatorname{Li}_{m-1}(z)
\end{displaymath}
So we get an analytic continuation

\begin{displaymath}
\operatorname{Li}_2(z) = -\int_0^z \log(1-u) \frac{d u}{u}
\end{displaymath}
where the path from $0$ to $z$ is in $\mathbb{C}\setminus [1,\infty)$

Functional equations:

\begin{displaymath}
\begin{gathered}
\operatorname{Li}_1(1-x y) = \operatorname{Li}_1(1-x) + \operatorname{Li}_1(1-y)\\
\operatorname{Li}_2 = \text{5 terms (Spence 1809, Abel 1828, ...)}
\end{gathered}
\end{displaymath}
Monodromy (on $\operatorname{Li}_2(x),\log(x),1$)

\begin{displaymath}
\gamma_0=\begin{pmatrix}1&0&0\\0&1&2\pi i\\0&0&1\end{pmatrix},
\gamma_1=\begin{pmatrix}1&-2\pi i&0\\0&1&0\\0&0&1\end{pmatrix}
\end{displaymath}
generate a Heisenberg group

\begin{displaymath}
\begin{pmatrix}1&\mathbb{Z}(1)&\mathbb{Z}(2)\\ 0&1&\mathbb{Z}(1)\\0&0&1\end{pmatrix}
\end{displaymath}
\hypertarget{Bloch-Wigner}{}\subsection*{{Bloch-Wigner Dilogarithm}}\label{Bloch-Wigner}

\begin{displaymath}
D(z) \coloneqq \operatorname{Im} \operatorname{Li}_2(z) + \arg(1-z)\log|z|
\end{displaymath}
is real-analytic in $\mathbb{C}\setminus\{0,1\}$ and continuous in $\mathbb{C}$.

\begin{displaymath}
\begin{gathered}
D\left(e^{i\theta}\right) = \sum_{n\geq 1} \frac{\sin n\theta}{n^2}\\
D(\overline{z}) = - D(z)
\end{gathered}
\end{displaymath}
hence vanishes on $\mathbb{R}$.

\begin{displaymath}
\begin{split}
D(z)&= D\left(1-z^{-1}\right)= D\left({(1-z)}^{-1}\right)\\
& - D\left(z^{-1}\right) = - D(1-z) = -D\left(-\frac{z}{1-z}\right)
\end{split}
\end{displaymath}
So we have a continuous real-vaued function on $\mathbb{P}^1(\mathbb{C})$ with a maximum at $z=(1+\sqrt{-3})/2$: $D(1+\sqrt{-3})/2)=1.0149\dots$.

Define recursively

\begin{displaymath}
z_{n+1}z_{n-1} = 1-z_n
\end{displaymath}
then $z_{n+5}=z_n$. If we call $z_0=x$, $z_1=y$, then we find

\begin{displaymath}
x,y,\frac{1-y}{x},\frac{x+y-1}{xy},\frac{1-x}{y}
\end{displaymath}
(Laurent phenomenon). (Cremona transformation of order 5 on $\mathbb{P}^2(\mathbb{C})$ is $(x,y)\mapsto\left(y,\tfrac{1-y}{x}\right)$.)

The 5-term recursion relation is

\begin{displaymath}
\sum_{j=0}^4 D(z_j)=0
\end{displaymath}
This can be explained geometrically.

\begin{displaymath}
 \includegraphics[width=602]{tetrahedron}
\end{displaymath}
In hyperbolic space, an ideal tetrahedron, with vertices at $0,1,\infty,z$, has volume $D(z)$. ($z=\tfrac{1+\sqrt{-3}}{2}$ is the regular tetrahedron; more generally, $z$ is the cross ratio of the 4 vertices , which is invariant under $PSL_2(\mathbb{C})=\operatorname{Isom}(\mathbb{H})$) The 5-term recursion relation comes from taking 5 points in $\mathbb{P}^1(\mathbb{C})$ and constructing five tetrahedra by taking the points 4 at a time

\begin{displaymath}
0 = \sum_{j=0}^4 {(-1)}^{j}\operatorname{Vol}((w_0,\dots,\hat{w}_j,\dots,w_4))
\end{displaymath}
The cancellation is the 3-2 Pachner move.

\begin{displaymath}
 \includegraphics[width=180]{pentagon}
\end{displaymath}
\textbf{Napier}: \emph{Mirifici logorithorum canonis descriptio}

Rule of circular parts

Spherical trigonometry (navigation mathematics): 6 quantities (3 angles + 3 lengths or, equivalently, 6 angles). Fix one to be $\pi/2$.

Parametrize parts wiith cross ratios of 4 points taken out of 5. The sides of the pentagon are $A,B,b',c,a'$.

Any equation among the parts remains valid after a cyclic permutation around the pentagon. Denote the five triangles by $(a_i, B_i, c_i, A_i, b_i)$, $i=0,1,\dots,4$, with $(a_0, B_0, c_0, A_0, b_0)\equiv(a, B, c, A, b)$. Under a cyclic permutation

\begin{displaymath}
(a,B,c,A,A,b)\mapsto (a_1,B_1,c_1,A_1,b_1) = (A',b',a',B,c')
\end{displaymath}
and

\begin{displaymath}
(a,B',c',A',b)\mapsto (A',b,a,B',c')
\end{displaymath}
Triangle can be solved if any two parts are known

\begin{displaymath}
\sin a =\tan b \tan B' = \cos A' \cos c'
\end{displaymath}
The surface

\begin{displaymath}
S: \left\{\begin{gathered}1-z_1=z_2z_0\\ 1-z_2=z_3z_1\\ \vdots\\ 1-z_0 = z_1z_4 \end{gathered}\right.
\qquad
\operatorname{Aut}(S)\simeq S_5
\end{displaymath}
is a del Pezzo surface of degree 5.

\begin{displaymath}
\begin{gathered}
\sum_{j=0}^4 z_j = 3-s,\quad -s=\prod_{j=0}^4 z_j\qquad\text{Sch&ouml;ne Gleichung}\\
(1-x)(1-y)(1-x-y) -s xy =0
\end{gathered}
\end{displaymath}
universal elliptic curve with a 5-torsion point $x_1(5)$.

Coxeter: 5-cycle

transmitted as mathematical gossip for a long time.

\hypertarget{number_theory}{}\subsubsection*{{Number Theory}}\label{number_theory}

\begin{displaymath}
\operatorname{Li}_2(1)=\zeta(2) = \frac{\pi^2}{6}\qquad\text{(Euler 1768)}
\end{displaymath}
More generally,

\begin{displaymath}
\begin{gathered}
 L(\chi,2) = \sum_{n\geq 1} \frac{\chi(n)}{n^2}\\
\chi\colon {(\mathbb{Z}/N\mathbb{Z})}^\times \to \mathbb{C}^\times \qquad\text{Dirichlet character}
\end{gathered}
\end{displaymath}


\end{document}