Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

October 21, 2013

Jet Categories at the nForum

Posted by David Corfield

Some people I talk to who have noticed a slackening off at the Café in recent months, and who know that some of this is due to John’s energy passing to his Azimuth project, don’t seem aware that another chunk of the energy didn’t just vanish, but got transmitted to the nForum. This venue has the advantage of democratically allowing anyone to initiate a discussion, but the disadvantage that people don’t seem to want to wade through every announcement of any alteration to an nLab entry for the occasional interesting nugget. For whatever reason, we don’t get visited much nowadays by some of the prestigious visitors of yesteryear. Still, if you want to see the day to day movements of Urs sweeping up great clumps of mathematical physics into a glorious synthetic package, the nForum is the place to be. Or, if you prefer to read the finished product, see his site.

Something we occasionally suggest to each other is a periodic digest of what’s happening at the nnLab, but I believe we’ve only managed two to date (I, II). Let me try something less ambitious.

One idea that’s interested me of late over at the nForum is to generalise the observation that an (,1)(\infty, 1)-category, CC, has a tangent (,1)(\infty, 1)-category, TCT C. If CC is an (,1)(\infty, 1)-topos, then so too is TCT C. If further it is cohesive, so too is TCT C (tangent cohesion). Since (,1)(\infty, 1)-toposes are the natural homes for cohomologies, and cohesive ones for differential cohomology, we would expect tangent (,1)(\infty, 1)-toposes to provide a version of such cohomologies, and they do, namely, twisted cohomology.

Now, given that tangent spaces are the natural environments for linear approximations of functions, one might expect there to be a parallel to the higher tangency provided by jet spaces. So we’ve been talking about the idea of a kkth jet (,1)(\infinity, 1)-category of CC, which will be a topos and cohesive again when CC is. There ought then to be cohomologies corresponding to these intermediate approximations.

There’s still so much I don’t understand about this general area, Goodwillie calculus, even with Charles Rezk helping us out, and so much still needs to be added to the nnLab (orthogonal calculus, manifold calculus,…). Recruits are always welcome.

Posted at October 21, 2013 10:23 AM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/2666

3 Comments & 0 Trackbacks

Typo

Your link to Azimuth is not followable, it needs an http://.

Posted by: William ML Leslie on October 23, 2013 2:30 AM | Permalink | Reply to this

Re: Typo

Fixed. Thanks.

Posted by: David Corfield on October 24, 2013 10:00 AM | Permalink | Reply to this

Re: Jet Categories at the nForum

This is certainly the kind of topic I’m willing to learn! Thank you. :)

(P.S.: there was a microscopic typo on the nLab page)

Posted by: Fosco Loregian on November 14, 2013 10:12 AM | Permalink | Reply to this

Post a New Comment