Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

June 16, 2006

Soibelman on NCG of CFT and Mirror Symmetry

Posted by Urs Schreiber

Yan Soibelman gave at ESI a brief outline of work on applying non-commutative methods to CFTs in order to understand mirror symmetry.

Maxim Kontsevich, Yan Soibelman
Homological mirror symmetry and torus fibrations
math.SG/0011041.

Though I haven’t looked at ot yet, I was told that an important reference in this context is

Daniel Roggenkamp, Katrin Wendland
Limits and Degenerations of Unitary Conformal Field Theories
hep-th/0308143.

This is apparently part of a much more general scheme, whose study has been begun in

Maxim Kontsevich, Yan Soibelman
Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I
math.RA/0606241 .

To save some time, as an introduction I simply quote the following summary from a lecture Soibelman has given last October at Vanderbilt University (\to).

He will explain the approach to Mirror Symmetry suggested in a joint project with Maxim Kontsevich. The aims is to explain the phenomenon of Mirror Symmetry in terms of homological algebra and non-commutative geometry. Discovered by physicists as a duality on a certain class of string theories, Mirror Symmetry turned out to be related to many deep questions of algebraic and symplectic geometry, algebra, number theory and differential equations. Non-commutative geometry provides an appropriate framework for study of what is called “D-branes” in the String Theory.

It combines physical idea of degenerating Conformal Field Theories with mathematical idea of Gromov-Hausdorff collapse of Calabi-Yau manifolds, as well as with unexpected relation to rigid analytic geometry. We suggest to view a given Conformal Field Theory as a kind of non-commutative space. Such non-commutative spaces can degenerate “at infinity”. Mirror symmetry can be explained in terms of the residual commutative geometry. On the algebraic side we will meet homotopy categories associated with compact symplectic manifolds. I am going to explain non-commutative formal geometry of those homotopy categories. There is another kind of non-commutative geometry of Mirror Symmetry. It is geometry of deformed Calabi-Yau manifolds (a kind of deformation quantization). I plan to discuss the way to construct such spaces starting with real manifolds equipped with an integral affine structure. This part of my lectures is also related to the so-called “tropical geometry”.

In his talk, Soibelman recalled some basics of Alain Connes’ spectral noncommutative metric geometry, in particular the concept of a spectral triple (A,H,L)(A, H, L), where AA is some algebra represented on the Hilbert space HH which carries an unbounded operator LL playing the role of the Laplace operator.

He emphasized how, using the GNS construction, we may think of the algebra AA as sitting inside HH, such that the product AAmAA \otimes A \overset{m}{\to} A gives rise to a product

(1)HHmH H \otimes H \overset{m}{\to} H

on HH.

This is constructed by the use of a formula that describes essentially something like a tree-level Feynman diagram with a single trivalent vertex. We start with an element of AHA \subset H in each of the two incoming vertices, propagate them forward using the “euclidean propagator” exp(tL)\exp(-t L), form the product at the vertex and propagate the result again along the outgoing edge. The sought after product is the limit of this procedure as tt tends to zero.

The point of this exercise is that 2D conformal field theories do give a realization of this setup - on loop space (\to).

The Hilbert space in question is that of states of the (closed) string

(2)H= p,qH p,q, H = \oplus_{p,q} H^{p,q} \,,

the role of the Laplace operator is plaed by the Virasoro generator L 0+L¯ 0L_0 + \bar L_0 and the operator product expansion provides us with a product on HH (\to)

(3)H^HOPEH^{z,z¯}. H \hat \otimes H \overset{\mathrm{OPE}}{\to} H \hat \otimes \mathbb{C}\lbrace z,\bar z\rbrace \,.

Hence we do obtain something like a spectral triple for the geometry of loop space.

In order to find the effective geometry of target space, one can take a certain limit which sends HH smallH \mapsto H_\mathrm{small} (nothing but what is known as the point particle limit of strings), which produces a (commutative for σ\sigma- models) algebra A 0A_0.

The effective target space of the theory can then be identified with

(4)Spec(A 0). \mathrm{Spec}(A_0) \,.

Furthermore, one can start with the Segal axioms for CFT (\to), which tell us how to assign correlators to Riemann surfaces. Passing to the point particle limit these Riemann surfaces degenerate to graphs, and we are left with something that Kontsevich calls field theory on graphs.

As far as I understand this is nothing but what string theorists are essentially doing all along, but certainly Kontsevich gives it a more sophisticated, probably rigorous, form.

Soibelman spent the rest of his talk with discussing technical details of how to measure lengths in noncommtative target spaces. I will not reproduce that.

Posted at June 16, 2006 9:41 AM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/844

2 Comments & 4 Trackbacks

Re: Soibelman on NCG of CFT and Mirror Symmetry

I was going to ask whether you could give us any insight into footnote 1 of the second Kontsevich-Soibelman paper you mention, where they say:We use “formal” non-commutative geometry in tensor categories, which is different from the non-commutative geometry in the sense of Alain Connes. Now, I see Lieven le Bruyn has already provided his own response to precisely this quotation. He suggests there that NCG in the non-Connesian sense be called non-geometry. Perhaps the reason why Connes’s constructions still appear in Soibelman’s talk is that “non-commutative geometry is that sort of non-geometry which is almost commutative…”

Posted by: David Corfield on June 16, 2006 12:14 PM | Permalink | Reply to this

Re: Soibelman on NCG of CFT and Mirror Symmetry

David, thanks a billion for this link.

It does pay to type all these entries, just for input like that.

As soon as I have less than 10 pending things to do, I’ll get back to you on this topic (might take more than a week though).

Posted by: urs on June 16, 2006 2:36 PM | Permalink | Reply to this
Read the post Connes on Spectral Geometry of the Standard Model, I
Weblog: The n-Category Café
Excerpt: Connes is coming closer to the spectral triple encoding the standard model coupled to gravity. Part I: some background material.
Tracked: September 6, 2006 12:24 PM
Read the post Connes on Spectral Geometry of the Standard Model, II
Weblog: The n-Category Café
Excerpt: On the nature and implication of Connes' identification of the spectral triple of the standard model coupled to gravity.
Tracked: September 6, 2006 6:53 PM
Read the post Poisson-Sigma Models, Lie Algebroids, Deformations and Higher Analogues in Vienna
Weblog: The n-Category Café
Excerpt: Announcement of ESI Workshop on Lie Algebroids in Summer 2007.
Tracked: May 4, 2007 4:49 PM
Read the post Spectral Triples and Graph Field Theory
Weblog: The n-Category Café
Excerpt: Yan Soibelman is thinking about spectral stringy geometry.
Tracked: June 12, 2007 9:00 PM