Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

June 25, 2012

Principal ∞-Bundles – general theory and presentations

Posted by Urs Schreiber

A few weeks back I had mentioned that with Thomas Nikolaus and Danny Stevenson we are busy writing up some notes on bundles in higher geometry. Now we feel that we are closing in on a fairly stable version, and so we thought it may be about time to share what we have and ask for feedback.

As it goes, this project has become a collection of three articles now. They are subdivided as

Principal ∞-bundles

  1. General theory (pdf)

  2. Presentations (pdf)

  3. Applications (not yet out)

The idea is that the first proceeds in full abstraction, using just the axioms of \infty-topos theory (so roughly, up to the technical caveats discussed here at length: using just the axioms of homotopy type theory), while the second discusses models of the axioms by presentations in categories of simplicial (pre)sheaves.

More explicitly, in the first one we discuss how, in a given \infty-topos, principal \infty-bundles are equivalent to cocycles in the \infty-topos, how fiber \infty-bundles are associated to principal \infty-bundles and how their sections are cocycles in twisted cohomology classifying twisted principal \infty-bundles and extensions of structure \infty-groups. We close by identifying the universal twisting bundles/local coefficient bundles with \infty-gerbes and discuss how this reproduces various notions of nn-gerbes.

In the second one we show how principal \infty-bundles are equivalent to cocycles in simplicial hyper-Čech-cohomology, and we prove a strictification result: in a 1-localic \infty-topos the space of principal \infty-bundles over any \infty-stack is modeled by ordinary simplicial bundles with an ordinary action of a simplicial group, the only weakening being that the principality condition holds only up to local weak equivalence. We discuss what this looks like for discrete geometry and for smooth geometry.

For a tad more detail see the abstracts (General Theory abstract, Presentations abstract). And for full details, including references (see page 4 of part 2 for a discussion of the literature) etc. see – of course – the writeups themselves: 1. General theory, 2. Presentations.

All comments would be welcome!

Posted at June 25, 2012 7:29 PM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/2536

4 Comments & 1 Trackback

Re: Principal ∞-Bundles – general theory and presentations

Looks like good reading, but the link for the second paper, Presentations, is the same as that for the first paper, General Theory.

Posted by: Chris Brav on June 25, 2012 9:22 PM | Permalink | Reply to this

Re: Principal ∞-Bundles – general theory and presentations

the link for the second paper, Presentations, is the same as that for the first paper, General Theory.

Could you check again? I thought I fixed that a few minutes after posting. Maybe you need to force your browser to reload the page.

Posted by: Urs Schreiber on June 26, 2012 6:03 AM | Permalink | Reply to this

Re: Principal ∞-Bundles – general theory and presentations

Typo in first paper, page 3

this we discus

Posted by: David Corfield on June 26, 2012 4:08 PM | Permalink | Reply to this

Re: Principal ∞-Bundles – general theory and presentations

Thanks! Should be fixed now.

Posted by: Urs Schreiber on June 26, 2012 7:35 PM | Permalink | Reply to this
Read the post Flat Ehresmann connections in Cohesive HoTT
Weblog: The n-Category Café
Excerpt: The formalization of flat Ehresmann connections in higher geometry.
Tracked: June 28, 2012 6:38 PM

Post a New Comment