Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

June 16, 2011

Differential Characteristic Cocycles

Posted by Urs Schreiber

Domenico, Jim and myself are in the process of producing a new version of our article on differential characteristic maps. Since this is part of the bigger story of differential cohomology in a cohesive topos we had originally restricted attention to a particular construction. But reactions showed that this made readers tend to miss the impact. So now we have added a brief section with more indications of the applications, that are being described in more detail elsewhere.

And we have rewritten the extended abstract. That I want to hereby bounce off the nnCafé readership. For the latest pdf version and a hyperlinked version of the abstract see behind the link

Cech cocycles for differential characteristic classes.

Here is the

extended Abstract

What is called secondary characteristic classes in Chern-Weil theory is a refinement of ordinary characteristic classes of principal bundles from cohomology to differential cohomology: to bundles and higher gerbes with smooth connection. We consider the problem of refining the construction of secondary characteristic classes from cohomology sets to cocycle spaces; and from Lie groups to higher connected covers of Lie groups by smooth \infty-groups: by smooth groupal A A_\infty-spaces. This allows us to study the homotopy fibers of the differential characteristic maps thus obtained and to show how these describe differential obstruction problems. This applies in particular to higher twisted differential spin structures called twisted differential string structures and twisted differential fivebrane structures .

To that end we define for every L L_\infty-algebra 𝔤\mathfrak{g} a smooth \infty-group GG integrating it, and define smooth GG-principal \infty-bundles with connection. For every L L_\infty-algebra cocycle of suitable degree, we give a refined \infty-Chern-Weil homomorphism that sends these \infty-bundles to classes in differential cohomology that lift the corresponding curvature characteristic classes.

When applied to the canonical 3-cocycle of the Lie algebra of a simple and simply connected Lie group GG this construction gives a refinement of the secondary first fractional Pontryagin class of GG-principal bundles to cocycle space. Its homotopy fiber is the 2-groupoid of smooth String(G)\mathrm{String}(G)-principal 2-bundles with 2-connection, where String(G)\mathrm{String}(G) is a smooth 2-group refinement of the topological string group. Its homotopy fibers over non-trivial classes we identify with the 2-groupoid of twisted differential string structures that appears in the Green-Schwarz anomaly cancellation mechanism of heterotic string theory.

Finally, when our construction is applied to the canonical 7-cocycle on the Lie 2-algebra of the String-2-group, it produces a secondary characteristic map for String\mathrm{String}-principal 2-bundles which refines the second fractional Pontryagin class. Its homotopy fiber is the 6-groupoid of principal 6-bundles with 6-connection over the Fivebrane 6-group . Its homotopy fibers over nontrivial classes are accordingly twisted differential fivebrane structures that have beeen argued to control the anomaly cancellation mechanism in magnetic dual heterotic string theory.

Posted at June 16, 2011 9:17 AM UTC

TrackBack URL for this Entry:   http://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/2409

3 Comments & 0 Trackbacks

Re: Differential Characteristic Cocycles

A couple of very trivial things from the paper.

On p. 4 you have F A\langle F_A \rangle with no mention of AA.

You have an ‘allow to’ and an ‘allows to’ which sound wrong, e.g.,

Our results allow to describe analogous twisted differential structures of ever higher covering dergree, (p. 7)

[note typo in ‘dergree’] and

this allows to elegantly derive the properties of untwisted differential string structures.(p. 6)

‘Allow’ needs an object, so “allows us to…”, but maybe better

Our results allow an analogous description of twisted differential structures of ever higher covering degree,

and

this allows an elegant derivation of the properties of untwisted differential string structures.

Posted by: David Corfield on June 16, 2011 11:38 AM | Permalink | Reply to this

Re: Differential Characteristic Cocycles

Mea culpa! Continental Europeans have a hard time with that, also with recall versus remind. I can only plead that I was holding off on proof reading since the versions were morphing several times a day.

Posted by: jim stasheff on June 16, 2011 12:54 PM | Permalink | Reply to this

Re: Differential Characteristic Cocycles

A couple of very trivial things from the paper.

Thanks a lot, David! Domenico and Jim have been so kind to fix these and other small things now, while I am being busy with something else.

The new version is here.

Posted by: Urs Schreiber on June 16, 2011 2:21 PM | Permalink | Reply to this

Post a New Comment