Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

November 20, 2007

Something Like Lie-Rinehart ∞-pairs and the BV-complex (BV, part VII)

Posted by Urs Schreiber

In the context of our previous discussion in Modules for Lie \infty-algebras I am preparing some notes

On Lie \infty-modules and the BV complex

Abstract. Some tentative remarks on generalizations of Chevalley-Eilenberg algebras from Lie algebras and their modules to Lie \infty-algebras and their modules, with an eye towards understanding the Batalin-Vilkovisky complex.

While not finished, I thought that I would share this now as kind of a reply to some of the things Jim Stasheff, Todd Trimble, Johannes Huebschmann and others said.

Apart from getting the generalities right, like formulating everything as nicely as possible internal to the category of chain complexes, the point is to discuss the BV complex “for the (-1)-brane” which I talked about in BV for Dummies and in On Noether’s second and take it as the motivating and guiding example to obtain and check the right definition of a Lie nn-algebroid, such that its dual is an arbitrarily graded dg-algebra of sorts.

All comments are welcome. Especially corrections.

Previous entries in this BV series are I II III IV V VI.

By the way, a pretty good set of slides summarizing BV is

Glenn Barnich
Algebraic structure of gauge systems: Theory and Applications
(pdf)

The toy example that I was talking about in BV for Dummies is essentially the one on slide 3 there.

Posted at November 20, 2007 7:55 PM UTC

TrackBack URL for this Entry:   http://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/1504

3 Comments & 5 Trackbacks

the Tate construction

Concerning the section about the Tate construction:

I have the old 1956 paper by Tate here, as well as Sullivan’s old paper on rational homotopy theory. There the killing of cohomology groups is done very much in components, choosing bases, etc.

I guess in modern rational homotopy theory texts its done differently, but I am probably mostly ignorant of these, for the moment.

So I was wondering by myself: what is the nice way to formulate the Tate construction, where we start with a dg-algebra AA and find an extension of it by successively throwing in new generators, such that the extension has all cohomology groups vanishing, except for the lowest one, which coincides with that of AA.

I am thinking: the step “throw in new generators” is really: form a mapping cone.

Namely if AA is may cochain complex and ker(d A n)\mathrm{ker}(d_A^n) its cocycles in degree n, then there is the canonical inclusion

ker(d A n)[k]A \mathrm{ker}(d_A^n)[k] \hookrightarrow A

and the Tate step of “killing” the cohomology H k(A)H^k(A) amounts to forming the mapping cone

Cone(ker(d A n)[k]A) \mathrm{Cone} ( \mathrm{ker}(d_A^n)[k] \hookrightarrow A ) and then extending that again to a quasifree dg-algebra.

While this looks right, it is quite likely just scratching the surface.

So I have this question:

what is the nice modern abstract neat way to think of the Tate construction?

Posted by: Urs Schreiber on November 21, 2007 2:53 PM | Permalink | Reply to this

Re: the Tate construction

It’s probably not as nice nor as modern
but I dsid try to do it without choosing a basis in my early papers on BFV:


75. “Homological reduction of constrained Poisson algebras,” J. Diff. Geom. 45 (1997), 221-240

Posted by: jim stasheff on November 22, 2007 2:56 AM | Permalink | Reply to this

Re: the Tate construction

Posted by: Urs Schreiber on November 22, 2007 12:10 PM | Permalink | Reply to this
Read the post On BV Quantization, Part VIII
Weblog: The n-Category Café
Excerpt: Towards understading BV by computing the charged n-particle internal to Z-categories, secretly following AKSZ.
Tracked: November 29, 2007 10:21 PM
Read the post L-infinity Associated Bundles, Sections and Covariant Derivatives
Weblog: The n-Category Café
Excerpt: Associated L-infinity structures are obtained from Lie action infinity-algebroids, leading to a concept of sections and covariant derivatives in this context.
Tracked: January 30, 2008 9:10 PM
Read the post Ambimorphic?
Weblog: The n-Category Café
Excerpt: On adjunctions between spaces and n-groupoids induced by homming out of the fundamental n-groupoid.
Tracked: May 6, 2008 6:46 PM
Read the post (Action) Lie Infinity-Algebroids
Weblog: The n-Category Café
Excerpt: Talk on the Lie infinity-algebroid perspective on the BRST complex and its relation to the integrated picture of action infinity-groups.
Tracked: May 8, 2008 12:07 PM
Read the post Frobenius algebras and the BV formalism
Weblog: The n-Category Café
Excerpt: Bruce Bartlett is looking at the latest article by Cattaneo and Mnev on BV-quantization of Chern-Simons theory.
Tracked: November 14, 2008 1:31 PM

Post a New Comment