Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

October 13, 2006

Bundle Gerbes: General Idea and Definition

Posted by Urs Schreiber

I was asked to edit the Wikipedia entry on bundle gerbes.

For one, it does not actually say what a bundle gerbe is. Another thing is that it falsely attributes the insight that the Wess-Zumino term in the WZW-model arises as a special case of parallel 2-transport to us. That should be corrected.

I’ll develop my contribution here, before copying it to Wikipedia.


A bundle gerbe is a categorification of a transition function of a fiber bundle. For that reason, it is sometimes also addressed as a transition bundle.

Despite its name, a bundle gerbe is not a gerbe. A gerbe is rather a categorification of the sheaf of sections of a fiber bundle.

A fiber bundle can be characterized (up to isomorphism) in several different ways, for instance as

  • a fibration,
  • a sheaf of sections,
  • a transition function,
  • an Atiyah groupoid extension.
If it is a principal U(1)U(1)-bundle or a complex line bundle, it can also be characterized as
  • an element in second integral cohomology.

Each of these descriptions has a categorification. They go, respectively, by the name

  • a 2-bundle,
  • a gerbe,
  • a bundle gerbe,
  • an Atiyah 2-groupoid extension,
  • an element in third integral cohomology.

The degree to which these have been studied and understood differs. In as far as they have been understood, one finds essentially the expected equivalences.

In particular, bundle gerbes are equivalent to a certain sub(-2-)category of gerbes, and are classified by third integral cohomology.

This cohomological classification has, historically, been one of the main motivations for the development of gerbes and bundle gerbes. For that reason, bundle gerbes are sometimes addressed as a “geometric realization of third integral cohomology”, in the same sense that complex line bundles are a “geometric realization of second integral cohomology”.

Of course this classification by integral cohomology applies only to what should be more precisely called complex line bundle gerbes or U(1)U(1)-principal bundle gerbes, which were introduced by Murray. Other notions of bundle gerbes can be defined, and in particular nonabelian principal bundle gerbes have been studied by Aschieri-Cantini–Jurčo.

It turns out that line bundle gerbes can alternatively be regarded as central extensions of groupoids. This is not to be confused with the (2-)groupoid extension mentioned above.


A bundle gerbe over a space XX is

  • a regular epimorphism Y π X \array{ Y \\ \pi \downarrow \\ X }
  • a fiber bundle B p Y [2] \array{ B \\ p \downarrow \;\; \\ Y^{[2]} } over the fiber product Y [2]Y^{[2]} of YY with itself, i.e. L p Y [2] Y π X, \array{ L \\ p \downarrow \;\; \\ Y^{[2]} &\stackrel{\rightarrow}{\rightarrow}& Y \\ && \pi \downarrow \;\; \\ && X } \,, together with a notion of product \otimes of fibers of BB;
  • on Y [3]Y^{[3]} an isomorphism μ:π 12 *Bπ 23 *Bπ 13 *B, \mu : \pi_{12}^*B \;\otimes\; \pi_{23}^*B \;\stackrel{\sim}{\to}\; \pi_{13}^* B \,, which satisfies an associativity relation on Y [4]Y^{[4]}. Here π 12,π 23,π 13\pi_{12}, \pi_{23}, \pi_{13} are the three obvious maps Y [3]Y [2]. Y^{[3]} \stackrel{\stackrel{\rightarrow}{\rightarrow}}{\rightarrow} Y^{[2]} \,.

For line bundle gerbes, XX is taken to be a smooth space, π:YX\pi : Y \to X a surjective submersion, BB a smooth line bundle and μ\mu a smooth isomorphism. This case was introduced by Murray in dg-ga/9407015.

For (nonabelian) GG-principal bundle gerbes, one chooses BB to be a GG-principal bibundle, which is a bundle that is GG-principal both for a left and a right GG action, which mutually commute. In other words, the fibers of BB are GG-bitorsors. This allows to define the product as p 12 *Bp 23 *B:=p 12 *B× Gp 23 *B. p_{12}^* B \;\otimes\; p_{23}^* B \;:=\; p_{12}^* B \;\times_G\; p_{23}^* B \,. This case was introduced by Aschieri, Cantini & Jurčo in hep-th/0312154.

For complex line bundle gerbes the above definition can be understood as obtained from the definition of a transition function of a line bundle by replacing the monoid of complex numbers by the monoidal category of 1-dimensional complex vector spaces; and by replacing equations between numbers by coherent (here: associative) isomorphisms of vector spaces.

Such a replacement is known as categorification.

Analogously, for principal bundle gerbes the above definition can be understood as obtained from the definition of a transition function of a principal GG-bundle by replacing the group GG by the 2-group GBiTor G\mathrm{BiTor} of GG-bitorsors, and by replacing equations between group elements by coherent (here: associative) isomorphisms of bitorsors.

Interpretation in terms of categorified transition functions.

In order to see this more explicitly, consider the special case where Y=UY = \mathbf{U} is a good covering of XX by open contractible sets {U i}\{U_i\} Y:= iU i, Y := \sqcup_i U_i \,, with Y X \array{ Y \\ \downarrow \\ X } being the obvious map which embeds a point in U iXU_i \subset X into XX. Then Y [2]Y^{[2]} is the disjoint union of double intersections of these open sets Y [2]= i,jU iU j. Y^{[2]} = \sqcup_{i,j} U_i \cap U_j \,.

The transition function of a local trivialization with respect to YY of a complex line bundle on XX is nothing but a complex function g:Y [2]. g : Y^{[2]} \to \mathbb{C} \,. satisfying g ijg jk=g ik g_{ij} g_{jk} = g_{ik} on each triple intersection U iU jU kU_i \cap U_j \cap U_k, where g ijg_{ij} denotes the restriction of gg to to U iU jY [2]U_i \cap U_j \subset Y^{[2]}.

This is equivalent to saying that p 12 *gp 23 *g=p 13 *g. p_{12}^* g \, p_{23}^* g = p_{13}^* g \,. Replacing this equation of (functions with values in) complex numbers by a coherent isomorphism of complex 1-dimensional vector spaces leads to the definition of a line bundle gerbe.

Interpretation in terms of groupoid extensions.

To any morphism YX Y \to X in a category with pullbacks, we may associate the groupoid Y :=Y [2]Y Y^\bullet := Y^{[2]} \stackrel{\to}{\to} Y whose object of objects is YY, whose object of morphisms is Y [2]Y^{[2]} and whose composition law is given by the unique vertical morphsim in Y [3] Y [2] Y [2] Y Y Y [2]. \array{ & & & Y^{[3]} \\ & & \swarrow &&\searrow \\ & Y^{[2]} & &&& Y^{[2]} \\ &\swarrow& &&& \searrow \\ Y &&& \downarrow &&& Y \\ & \nwarrow &&&& \nearrow \\ &&& Y^{[2]} } \,.

For instance, for π:YX\pi : Y \to X a surjective submersion, the objects of Y Y^\bullet are the points of YY, and there is a unique morphism y 1y 2y_1 \to y_2 whenever π(y 1)=π(y 2)\pi(y_1) = \pi(y_2).

The above definition of a bundle gerbe can be understood as an enrichment of this groupoid in the sense of enriched categories. For line bundle gerbes the enrichment is over 1DVect1D\mathrm{Vect}, for principal bundle gerbes the enrichment is over GBiTorG\mathrm{BiTor}.

For line bundle gerbes this is often expressed as saying that a line bundle gerbe is a U(1)U(1)-central extension of Y Y^\bullet.

Posted at October 13, 2006 10:17 AM UTC

TrackBack URL for this Entry:

0 Comments & 17 Trackbacks

Read the post Bundle Gerbes: Connections and Surface Transport
Weblog: The n-Category Café
Excerpt: Definition of connection on a bundle gerbe and of the surface transport computed from it.
Tracked: October 13, 2006 3:32 PM
Read the post D-Branes from Tin Cans: Arrow Theory of Disks
Weblog: The n-Category Café
Excerpt: On disk holonomy and boundary conditions.
Tracked: October 18, 2006 3:46 PM
Read the post WZW as Transition 1-Gerbe of Chern-Simons 2-Gerbe
Weblog: The n-Category Café
Excerpt: How the WZW 1-gerbe arises as the transition 1-gerbe of the Chern-Simons 2-gerbe.
Tracked: October 29, 2006 4:56 PM
Read the post Flat Sections and Twisted Groupoid Reps
Weblog: The n-Category Café
Excerpt: A comment on Willerton's explanation of twisted groupoid reps in terms of flat sections of n-bundles.
Tracked: November 8, 2006 11:45 PM
Read the post Local Transition of Transport, Anafunctors and Descent of n-Functors
Weblog: The n-Category Café
Excerpt: Conceps and examples of what would be called transition data or descent data for n-functors.
Tracked: December 8, 2006 7:14 AM
Read the post The Globular Extended QFT of the Charged n-Particle: Definition
Weblog: The n-Category Café
Excerpt: Turning a classical parallel transport functor on target space into a quantum propagation functor on parameter space.
Tracked: January 25, 2007 7:45 PM
Read the post QFT of Charged n-particle: Chan-Paton Bundles
Weblog: The n-Category Café
Excerpt: Chan-Paton bundles from the pull-push quantization of the open 2-particle.
Tracked: February 7, 2007 8:31 PM
Read the post Some Conferences
Weblog: The n-Category Café
Excerpt: A conference on bundles and gerbes, another one on topology, and comments on associated 2-vector bundles and String connections.
Tracked: April 19, 2007 8:58 PM
Read the post Notes by Jurčo on generalized Bundle Gerbes
Weblog: The n-Category Café
Excerpt: Branislav Jurco has some notes on nonabelian bundle 2-gerbes and on associated bundle 1-gerbes.
Tracked: September 10, 2007 7:30 PM
Read the post Obstructions for n-Bundle Lifts
Weblog: The n-Category Café
Excerpt: On obstructions to lifting the structure n-group of n-bundles.
Tracked: September 13, 2007 6:48 PM
Read the post What is the Fiber?
Weblog: The n-Category Café
Excerpt: On bundle gerbes and whether or not they "are" 2-bundles.
Tracked: October 15, 2007 10:34 PM
Read the post On String- and Chern-Simons n-Transport
Weblog: The n-Category Café
Excerpt: Slides on String- and Chern-Simons n-Transport.
Tracked: October 23, 2007 9:50 PM
Read the post 2-Vectors in Trondheim
Weblog: The n-Category Café
Excerpt: On line 2-bundles.
Tracked: November 5, 2007 9:55 PM
Read the post Lie oo-Connections and their Application to String- and Chern-Simons n-Transport
Weblog: The n-Category Café
Excerpt: A discussion of connections for general L-infinity algebras and their application to String- and Chern-Simons n-transport.
Tracked: December 25, 2007 7:37 PM
Read the post States of Chern-Simons Theory
Weblog: The n-Category Café
Excerpt: A list of selected literature discussing Chern-Simons theory and its space of states.
Tracked: February 1, 2008 6:00 PM
Read the post Construction of Cocycles for Chern-Simons 3-Bundles
Weblog: The n-Category Café
Excerpt: On how to interpret the geometric construction by Brylinksi and McLaughlin of Cech cocycles classified by Pontrjagin classes as obstructions to lifts of G-bundles to String(G)-2-bundles.
Tracked: February 12, 2008 1:06 PM
Read the post Eli Hawkins on Geometric Quantization, II
Weblog: The n-Category Café
Excerpt: Eli Hawkins explains his method of getting a quantum algebra from the convolution algebra of sections on a symplectic groupoid.
Tracked: June 27, 2008 5:48 PM

Post a New Comment