Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

July 11, 2005

Playing Catchup

I don’t know that I will be quite so assiduous about blogging from Strings 2005 as I was last year in Paris (I, II, III). I hope, at least to use this as an opportunity to make some comments on developments I’d meant to blog about before, but never got around to.

Since the slides are online, you can check out the other talks yourself.

Eva Silvertein talked about her recent paper with McGreevy about tachyon condensation in big bang/big crunch backgrounds. She and collaborators have written a series of papers attempting to lay out the case for localized tachyon condensation. Imagine you have a compactification on a manifold MM with a nontrivial first homology, H 1(M,)H^1(M,\mathbb{R}). If

  1. There’s some region where the length, ll, of the minimal geodesic around this nontrivial cycle is substringy, l<l sl\lt l_s.
  2. The spin structure of the spacetime fermions, restricted to this S 1S^1 have the bounding spin structure.

then there is a Scherk-Schwarz tachyon localized near this minimal geodesic. From the behaviour under worldsheet RG flow, and by analogy with Liouville theory, they argued that this leads the manifold to pinch off this cycle.

In the more recent paper with McGreevy, this setup is applied to cosmological scenarios, where one has an FRW cosmology, in which the radius of the circle is time-dependent ds 2=dt 2+a(t) 2dx 2+ds 2 ds^2 = -dt^2 + a(t)^2 d\vec{x}^2 + ds_\perp^2 (one of the x\vec{x} directions is compactified on a circle). They, again argue that at early (late) times, when l(t)<l sl(t)\lt l_s, tachyon condensation — localized in time — cuts off the classical big bang (crunch) singularity, replacing it with an intrinsically stringy regime.

A very attractive story, but my inability to make sense of the details kept me from writing about this before. I can’t say that my understanding has improved enough to say anything really insightful now.

Eric Verlinde talked about his paper with Craps and Sethi. They consider a linear dilaton background, where the dilaton increases linearly along a null direction (producing no net shift in the worldsheet CFT’s central charge). The worldsheet stress tensor looks like T=X +X +12X iX i+Q 2X + T= -\partial X^+ \partial X^- + \frac{1}{2} \partial X_i \partial X_i + Q\partial^2 X^+ In the Einstein frame, you clearly see the null singularity ds E 2=2dudv+udx i 2,ϕ(u)=2logu d s_E^2 = -2d u d v + u d x_i^2,\quad \phi(u) = -2\log u at u=0u=0, where u=e Qx +/2u=e^{Q x^+ /2}, v=2x /Qv=2 x^- /Q. In the string frame, the metric is flat, but strings become infinitely strongly coupled at u=0u=0. Lifting to M-theory, one gets ds 11 2 =e 43Qx +dy 2+e 23Qx +(2dx +dx +dx i 2) =u 2dy 22dudv+udx i 2\array{ \arrayopts{\colalign{right left}} d s^2_{11} &= e^{-\frac{4}{3}Q x^+} d y^2 + e^{\frac{2}{3}Q x^+}(-2 d x^+ d x^- + d x_i^2)\\ &= u^{-2} d y^2 -2d u d v +u d x_i^2 } which also has a null singularity at u=0u=0, where u=e 23Qx +u=e^{\frac{2}{3} Q x^+}, v=32Qx +v= \frac{3}{2Q}x^+.

Verlinde and collaborators write down a DLCQ matrix string theory for this background, S=Trdσdτ(DX i) 2+θ TDθ+e 2Qτ/RF+e 2Qτ/R[X i,X j] 2e Qτ/Rθ TΓ i[X i,θ] S = Tr \int d\sigma d\tau (D X_i)^2 + \theta^T D \theta + e^{2Q\tau/R} F + e^{-2Q\tau/R} \sum [X_i,X_j]^2 - e^{-Q\tau/R} \theta^T \Gamma^i [X_i,\theta] where p +=N/Rp^+ = N/R, x =x +2πRx^-=x^-+2\pi R. This is a U(N)U(N) supersymmetric YM theory on a nontrivial 1+1 dimensional manifold, a piece of Milne space. At early times, the effective Yang Mills theory is weakly coupled. At late times, the weakly-coupled string theory is valid. This is an interesting nonperturbative model for the big bang (albeit, with a null, rather than a spacelike singularity).

On the other hand, the Milne space is non-Hausdorff, so the physics of the SYM theory in this background is going to be a bit … interesting.

Posted by distler at July 11, 2005 11:08 AM

TrackBack URL for this Entry:

0 Comments & 1 Trackback

Read the post Strings 2005
Weblog: Not Even Wrong
Excerpt: Strings 2005, the latest in a series of yearly huge string theory conferences, will be taking place this week in Toronto. This series began in 1997 in Amsterdam, and in recent years has attracted 445 participants to Cambridge in 2002,...
Tracked: July 11, 2005 3:55 PM

Post a New Comment