Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

August 23, 2005

Designing the 5th Dimension

I’ve just gotten back from a visit to the University of Washington which is, currently, the mecca for applications of AdS/CFT to QCD. I’ve talked a bit about some of the applications to RHIC physics. But there are lots of other interesting recent developments.

I’ll probably talk some more about them in future posts but, for today, I thought I’d summarize a paper by Erlich, Katz, Son & Stephanov.

Rather than trying to find a string background whose near-horizon geometry is holographically dual to QCD, they take a “bottom-up” approach, introducing those fields in AdS5 which couple to the observables they are interested in. To study the low-lying mesons of QCD, they introduce 5D SU(N f) L×SU(N f) RSU(N_f)_L\times SU(N_f)_R gauge fields, A L,R aA_{L,R}^a which couple to the corresponding currents, q¯γ μ12(1±γ 5)t aq\overline{q}\gamma_\mu \frac{1}{2}(1\pm\gamma_5)t^a q, and a 5D scalar, X α¯βX^{\overline{\alpha}\beta}, in the (N¯ f,N f)(\overline{N}_f,N_f) representation of SU(N f) R×SU(N f) LSU(N_f)_R\times SU(N_f)_L, which couples to the quark bilinear. The geometry is taken to be that of a slice of AdS5, ds 2=1z 2(dz 2+η μνdx μdx ν),0<zz m ds^2 = \frac{1}{z^2} (dz^2 + \eta_{\mu\nu} dx^\mu dx^\nu),\qquad 0\lt z\leq z_m The wall at z=z mz=z_m represents the effect of confinement. Normally, this is the location where the supergravity approximation breaks down (curvatures diverge, etc.), and we need a stringy completion of the geometry, involving some D-brane. In this crude model, the 4D gauge coupling doesn’t run at all, until we hit the “IR brane,” where we simply impose some boundary condition.

The action is

S=d 5xgTr[|DX| 2+3|X| 214g 5 2(F L 2+F R 2)] S= \int d^5 x \sqrt{g} Tr\left[\left|D X\right|^2 + 3\left|X\right|^2 - \frac{1}{4g_5^2} (F_L^2 +F_R^2)\right]

where g 5g_5 is the 5D gauge coupling. The (negative) mass-squared of the field XX is determined by the relation m 2=Δ(Δ4)m^2 = \Delta(\Delta-4), and the (naïve) scaling dimension, Δ=3\Delta=3, of the quark bilinear. The UV boundary condition on XX is given by lim z02zX(z)=M \lim_{z\to 0} \frac{2}{z} X(z) = M where MM is the quark mass matrix. The other “branch,” as usual, gives the expectation value of the quark bilinear, Σ α¯β=q¯ R αq L β\Sigma^{\overline{\alpha}\beta}=\langle\overline{q}_R^\alpha q_L^\beta\rangle,

X(z)=12Mz+12Σz 3+ X(z) = \textstyle{\frac{1}{2}} M z + \textstyle{\frac{1}{2}} \Sigma z^3 +\dots

Assuming no explicit flavour symmetry breaking, M=m q𝟙M= m_q &#x1d7d9;, the condensate Σ=σ𝟙\Sigma= \sigma &#x1d7d9;. In principle, value of σ\sigma is determined by solving the classical equations of motion, subject to the boundary conditions for XX on the IR brane. Instead of specifying those, they treat σ\sigma as another free parameter, and solve the equations of motion, using (2) as the UV boundary condition. For the gauge fields, they take the simplest possible boundary conditions, F L(z m)=F R(z m)=0 F_L(z_m)=F_R(z_m)=0 on the IR brane.

All in all, the model has 4 free parameters, g 5,z m,mq,g_5, z_m, m-q, and σ\sigma. g 5g_5 is fixed by comparing the large-q 2q^2 behaviour of the 2-point function of the vector current to that of perturbative QCD, 1g 5 2=N c12π 2 \frac{1}{g_5^2} = \frac{N_c}{12\pi^2} The remaining three parameters are fit to data.

Assuming N f=2N_f=2 and isospin symmetry, some obvious observable to look at are the masses of the lowest-lying mesons, m π,m ρ,m A 1m_\pi,m_\rho,m_{A_1} (respectively, the lowest mass pseudoscalar, vector, and pseudovector mesons), the pion decay constant, f πf_\pi, and the corresponding weak decay constants F ρF_\rho and F A 1F_{A_1}. Finally, there’s the ρ\rho-π\pi coupling, g ρππg_{\rho\pi\pi}. That’s 7 observables, and 3 adjustable parameters.

The model (1) incorporates the basic structure of chiral symmetry-breaking. So, without any dynamical insight, you might expect agreement at the 10-20% level. Remarkably, the best-fit for the 7 data points has an RMS error ε RMS=(1n i(δO i/O i) 2) 1/2 \varepsilon_{RMS} = \left(\textstyle{\frac{1}{n}}\sum_i(\delta O_i/O_i)^2\right)^{1/2} (here, n=4=n=4= the number of observables minus the number of input parameters and δO/O\delta O/O is the fractional error in each observable) of 4%.

That’s quite a bit better than we would have expected. It seems that, even in this very crude approximation, AdS/CFT captures some nontrivial features of the dynamics of QCD.

Posted by distler at August 23, 2005 1:40 AM

TrackBack URL for this Entry:

2 Comments & 1 Trackback

Re: Designing the 5th Dimension

I thought I might point out a very similar paper which appeared shortly afterward by Da Rold and Pomarol .

I find these papers fun and encouraging. What’s not been clear to me is what AdS/CFT is actually doing for the models. The assumed symmetries of the chiral Lagrangian are already very constraining.

Posted by: Christopher Herzog on August 23, 2005 12:52 PM | Permalink | Reply to this

Da Rold and Pomarol

That’s a really nice paper. They do quite a bit more along the same lines.

I think there’s more here that just chiral symmetry (or, even, chiral symmetry and large-N cN_c). I’m not sure how much more, though.

Posted by: Jacques Distler on August 23, 2005 1:40 PM | Permalink | PGP Sig | Reply to this
Read the post AdS/Neutron Stars
Weblog: Musings
Excerpt: Domokos and Harvey on a phase transition in nuclear matter.
Tracked: April 27, 2007 10:04 AM

Post a New Comment