Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

July 26, 2006

K-Theory for Dummies, II

Posted by Urs Schreiber

Before finishing the last entry I should review some basic facts about K-theory and D-branes, beyond of what I had in my previous notes (\to).

Apart from the Brodzki-Mathai-Rosenberg-Szabo paper (\to) I’ll mainly follow

T. Asakawa, S. Sugimoto, S. Terashima
D-branes, Matrix Theory and K-homology
hep-th/0108085

which is based in part on

Richard J. Szabo
Superconnections, Anomalies and Non-BPS Brane Charges
hep-th/0108043

and

Jeffrey A. Harvey, Gregory Moore
Noncommutative Tachyons and K-Theory
hep-th/0009030.

Since Witten’s original claim that D-branes are described by K-theory

Edward Witten
Overview Of K-Theory Applied To Strings
hep-th/0007175

several refinements of the precise relationship have been discussed. Usually, the decategorification and Grothedieck group completion performed in forming K-theory from the category of vector bundles is identified with the physical process of partial mutual annihilation of space-filling D9 brane and anti-brane pairs, thereby realizing all lower-dimensional branes as decay products of D9-brane configurations.

T. Asakawa, S. Sugimoto and S. Terashima in their paper promote an alternative point of view, which, as they aim to demonstrate, makes more direct contact with the conception of K-theory in terms of C *C^*-algebras. Namely, they use the fact that one can go the other way around, and realize all higher-dimensional branes as composites of non-BPS D(-1) branes, using a certain flavor of what is called Matrix Theory.

From this point of view the world is described by NN\to \infty objects called non-BPS D-instantons, whose geometric configuration is encoded by ten operators

(1)Φ μ, \Phi^\mu \,,

called the scalar fields, as well as an operator

(2)T, T \,,

called the tachyon field, all represented on some seperable Hilbert space

(3). \mathcal{H} \,.

The mathematically inclined reader not familiar with this might (or might not) get an impression of what is going on here by looking at

Alain Connes, Michael R. Douglas, Albert Schwarz
Noncommutative Geometry and Matrix Theory
hep-th/9711162.

The dynamics of these funny objects is encoded by a functional which contains terms like

(4)tr(e T 2[Φ μ,Φ ν][Φ μ,Φ ν]+e T 2[Φ μ,T][Φ μ,T]). \mathrm{tr}\left( e^{-T^2}\left[\Phi^\mu, \Phi^\nu\right]\left[\Phi_\mu, \Phi_\nu\right] + e^{-T^2}\left[\Phi^\mu, T\right]\left[\Phi_\mu, T\right] \right) \,.

This is something one derives from boundary string field theory.

One expects to be able to make full sense of this only if at least

(5)e T 2 e^{-T^2}

is trace class, hence TT is an unbounded operator, and

(6)[Φ μ,Φ ν],[T,Φ μ] [\Phi^\mu,\Phi^\nu] \,,\;\;\;\; [T,\Phi^\mu]

are in

(7)B(), B(\mathcal{H}) \,,

the space of bounded operators on \mathcal{H}.

Anyone who has run across a spectral triple before should now have a déjà vu. If we like Fredholm modules better than spectral triples, we may instead consider the normalized tachyon operator

(8)T b=T(1+T 2) 1/2. T_b = \frac{T}{(1+T^2)^{1/2}} \,.

This is now bounded and e T 2e^{-T^2} being trace class implies that T b 21T_b^2 - 1 is compact. Similarly the [T,Φ μ][T,\Phi^\mu] are now required to be compact operators - and we have obtained a Fredholm module from our spectral triple describing D-instanton dynamics.

This story is thought to extend to an entire dictionary, which should look roughly like this.

(9)math physics Dirac operatorD Tachyon fieldT Fredholm operatorF normalized Tachyon fieldT(1+T 2) 1/2 Hilbert space space ofN=D-instanton Chan-Paton labels C *-algebraA spacetime encoded in scalar fieldsΦ spectral triple(,D,A) D-brane configuration fredholm module(,F,A) D-brane configuration unitary equivalence of Fredholm modules gauge equivalence of D-brane configurations operator homotopy of Fredholm modules deformation of tachyon configuration spectral action functional ofD dynamics of tachyon condensation induced byT representation*-homomorphismϕ:AB() embeddingofDbraneinspacetime imϕ the (algebra describing the) world-volume of the embedded D-brane kerF D-branes left over after tachyon condensation cokerF anti D-branes left over after tachyon condensation indF=dimkerFdimcokerF net number of D-branes left after tachyon condensation K-homologyK (A) Dbranesmodulogaugeequivalence K-cohomology (-theory)K (A) DbraneRRchargesmodulogaugeequivalence index pairingK (A)×K (A) net number of D-branes after tachyon condensation for given RR-charge degenerate Fredholm moduleF 21=0 D-instantons completely disappearing after tachyon condensation KK-theory ? \array{ \mathbf{\text{math}} & \mathbf{\text{physics}} \\ \text{Dirac operator} D & \text{Tachyon field} T \\ \text{Fredholm operator} F & \text{normalized Tachyon field} \frac{T}{(1 + T^2)^{1/2}} \\ \text{Hilbert space} \mathcal{H} & \text{space of}N=\infty \text{D-instanton Chan-Paton labels} \\ C^*\text{-algebra} A & \text{spacetime encoded in scalar fields} \Phi \\ \text{spectral triple} (\mathcal{H},D,A) & \text{D-brane configuration} \\ \text{fredholm module}(\mathcal{H},F,A) & \text{D-brane configuration} \\ \text{unitary equivalence of Fredholm modules} & \text{gauge equivalence of D-brane configurations} \\ \text{operator homotopy of Fredholm modules} & \text{deformation of tachyon configuration} \\ \text{spectral action functional of} D & \text{dynamics of tachyon condensation induced by}T \\ \text{representation} *\text{-homomorphism} \phi : A \to \mathrm{B}(\mathcal{H}) & embedding of D-brane in spacetime \\ \mathrm{im} \phi & \text{the (algebra describing the) world-volume of the embedded D-brane} \\ \mathrm{ker}F & \text{D-branes left over after tachyon condensation} \\ \mathrm{coker}F & \text{anti D-branes left over after tachyon condensation} \\ \mathrm{ind}F = \mathrm{dim}\mathrm{ker}F - \mathrm{dim}\mathrm{coker}F & \text{net number of D-branes left after tachyon condensation} \\ \text{K-homology} K^\bullet(A) & D-branes modulo gauge equivalence \\ \text{K-cohomology (-theory)} K_\bullet(A) & D-brane RR charges modulo gauge equivalence \\ \text{index pairing} K^\bullet(A)\times K_\bullet(A) \to \mathbb{Z} & \text{net number of D-branes after tachyon condensation for given RR-charge} \\ \text{degenerate Fredholm module} F^2 - 1 = 0 & \text{D-instantons completely disappearing after tachyon condensation} \\ \text{KK-theory} & ? }

Asakawa, Sugimoto and Terashima are mainly interested in identifying the very last entry on the right. They argue in

T. Asakawa, S. Sugimoto, S. Terashima
D-branes and KK-theory in Type I String Theory
hep-th/0202165

that the KK-theory KK(A,B)KK(A,B) describes D-brane configurations on product spaces ABA\otimes B (with AA and BB the corresponding C *C^*-algebras.) I am not sure that I precisely follow this, but it is certainly compelling to associate KK-theory to pairs of D-brane configurations. Given that D-branes “are modules” (\to), KK-theory seems to describe the associated bimodules.

But before I get into this KK issue I should try to explain some of the entries of the above dictionary.

Tachyon fields as Dirac operators

One of the crucial keys for unlocking the above dictionary is the fact that the tachyon field operators that we are talking about indeed are Dirac operators in situations where they describe “geometric” D-branes.

Seiji Terashima
A Construction of Commutative D-branes from Lower Dimensional Non-BPS D-branes
hep-th/0101087.

D-branes as spectral triples or Fredholm modules

Recall the target space definition of a D-brane (\to), as a spin \mathrm{spin}^\mathbb{C} manifold WW with a Chan-Paton K-class EE over it embedded into spacetime by means of ϕ:WX\phi : W \to X.

This data is equivalently encoded in a spectral triple (,ρ:C(X)B(),D)(\mathcal{H},\rho : C(X) \to B(\mathcal{H}),D) or, alternatively, a Fredholm module (hence a class in K-homology) by setting

(10)=L 2(W,S WE), \mathcal{H} = L^2(W, S_W \otimes E) \,,

where S WS_W is the spinor bundle on WW, by letting the **-homomorphism

(11)ρ:C(X)B() \rho : C(X) \to B(\mathcal{H})

be given by precomposition with ϕ\phi and taking DD to be the Dirac operator on WW.

Notice that in particular the embedding of the D-brane is indeed encoded in an algebra homomorphism, as stated in the above table (which is of course nothing but a result of applying the contravariant functor from topological spaces to C *C^*-algebras).

We don’t want to distinguish D-branes up to gauge transformations, up continuous deformations of the tachyon potential D\simeq D and up to addition of DD-brane configurations which disappear after tachyon condensation. Dividing out the space of Fredholm modules by these three equivalence relations, following the above dictionary, yields the K-homology group, and our D-brane defines a class of that. Which K-homology group precisely (which degree, real or complex, depends on whether we are in ty IIA, IIB or I, and on details which I have not mentioned yet.)

“Bi-branes” as bimodules

Let’s follow Asakawa et al. again and think of the Hilbert space \mathcal{H} appearing in our spectral triples as the space l 2(N,C)\mathcal{H} \simeq l^2(N,\C) of square summable series with amplitudes valued in \mathbb{C}, one for each of the NN Chan-Paton labels. Since \mathbb{C} is the C *C^*-algebra of a point, we might imagine that it makes sense to consider Chan-Paton amplitudes indexed by a more general algebra BB, encoding not just a point but some other space. This would lead to a BB-Hilbert space l 2(N,B)l^2(N,B), where linearity with respect to the complex numbers is replaced by linearity with respect to some C *C^*-algebra BB.

As I said, Askawa et al. argue that this does describe D-branes on product manifolds. While I am wondering if it should not rather describe configurations with open strings stretched between a space encoded by AA and one encoded by BB, I am willing to accept that it seems not incredibly unnatural to extend the above table and generalize Fredholm modules to bimodules:

Kasparov’s KK-Theory

So we start with two C *C^*-algebra AA and BB. We want to construct something like an AA-BB-bimodule with a Fredholm operator represented on it. The fact that left and right bimodule action commute can be rephrased as saying that AA acts BB-linearly, if we like. In particular, if B=CB=\C, this would just say that AA acts by ordinary linear maps on some vector space.

So generalizing this, one says that a Hilbert BB-module is a BB-module with a BB-valued (instead of CC-valued) inner product. An (odd) Kasparaov AA-BB bimodule is then a Hilbert BB-module on which AA acts by BB-linear self-adjoint operators, together with a self-adjoint operator FF, playing the role of a Fredholm operator.

The definition (inlcuding the details which I skipped) is such that for B=CB = \C this reduces to an ordinary Fredholm module.

The duality between K-theory and K-homology in this language amounts to switching between Kasparav AA-C\C and C\C-AA bimodules.

The important point is that on Kasparov bimodules we do have a product induced from the ordinary tensor product of modules:

(12)KK i(A,B)×KK j(B,C)KK i+j(A,C). KK_i(A,B) \times KK_j(B,C) \to KK_{i+j}(A,C) \,.

While I am not sure yet about the physical interpretation of KK (A,B)KK_\bullet(A,B) for AA and BB both different from the ground field, KK-theory certainly provides us with a very natural way to obtain K-cohomology as the dual to the Fredholm-module K-cohomology description of D-branes described above.

We simply observe that KK(,)KK(\mathbb{C},\mathbb{C}) is the group of equivalence classes of \mathbb{C}-modules equipped with a \mathbb{C}-action. But this are nothing but vector spaces, hence the K-theory of a point, hence isomorphic to the natural numbers \mathbb{Z}.

Therefore the index pairing of K-theory with K-homology (\to) now essentially just becomes the product of a \mathbb{C}-AA bimodule (a K-theory class) with a AA-\mathbb{C}-bimodule (a K-homology class).

The real power of the KK-formuation, though, as emphasized by Brodzki, Mathai, Rosenberg and Szabo, is that, since we are in a braided context, we may perform the KK-product only over certain factors of the left and right algebras. This allows to encode Poincaré duality. Maybe I’ll talk about that another time.

Posted at July 26, 2006 10:42 AM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/880

0 Comments & 2 Trackbacks

Read the post Quillen's Superconnections -- Functorially
Weblog: The String Coffee Table
Excerpt: On how to interpret the superconnections appearing on brane/anti-brane configurations in terms of functorial transport.
Tracked: July 27, 2006 1:46 PM
Read the post Connes on Spectral Geometry of the Standard Model, II
Weblog: The n-Category Café
Excerpt: On the nature and implication of Connes' identification of the spectral triple of the standard model coupled to gravity.
Tracked: September 6, 2006 7:23 PM