Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

July 20, 2006

Brodzki, Mathai, Rosenberg & Szabo on D-Branes, RR-Fields and Duality

Posted by Urs Schreiber

I have begun reading

Jacek Brodzki, Varghese Mathai, Jonathan Rosenberg, Richard J. Szabo
D-Branes, RR-Fields and Duality on Noncommutative Manifolds
hep-th/0607020 .

This is a detailed study of the concepts appearing in the title, using and extending the topological and algebraic machinery known from “topological T-duality” (I, II, III, IV, V). The motivation is to formulate everything in C *C^*-algebraic language, in order to get, both, a powerful language for the ordinary situation as well as a generalization to noncommutative spacetimes.


Warning: I am still editing this entry.

The main result presented is a generalization of the formula for D-brane charge known from

Ruben Minasian, Gregory Moore
K-theory and Ramond-Ramond charge
hep-th/9710230,

which is roughly the Chern class of the Chan-Paton bundle times the square root of the Todd class.

The authors of the present paper manage to find an analogue of the Todd class for general spin c\mathrm{spin}^c C *C^*-algebras, such that in terms of this the D-brane charge in the corresponding noncommutative geometry is still given by a formula of the familiar form.

Before starting, I would like to record some of the definitions.

Let XX be a manifold - spacetime - assumed to be spin, of dimension 10 and equipped with a Riemannian metric.

First, an elementary definition, for the sake of completeness. The goal is to very precisely state what we are talking about.

Definition 1) An (non-twisted) D-brane in XX is an embedded spin c\mathrm{spin}^c-manifold

(1)ϕ:WX, \phi : W \to X \,,

together with a K-theory class

(2)EK 0(W), E \in K^0(W) \,,

specifying the Chan-Paton bundle on the D-brane according to

Edward Witten
Overview Of K-Theory Applied To Strings
hep-th/0007175.

The point of this being “non-twisted” is that, more generally, there is a Kalb-Ramond field on XX, manifested in terms of an abeluian gerbe with connection and curving. In the presence of non-trivial such gerbes

Daniel S. Freed, Edward Witten
Anomalies in String Theory with D-Branes
hep-th/9907189

tells us that we have a twisted Chan-Paton bundle, with the twist given by the class of the gerbe pulled back to the D-brane and equal to the third Stieffel-Whitney-class of WW (\to).

So we really need a more refined definition of D-brane. (And I should maybe remark that we are talking here about what one could call “geometric D-branes”, those coming from submanifolds, as opposed to the more general ones arising as arbitrary CFT boundary conditions. No CFT is considered explicitly in the present case.)

Definition 2) A (possibly twisted) D-brane in XX in the presence of a Kalb-Ramond background field, i.e. in the presence of an abelian gerbe with connection and curving GX\mathbf{G} \to X (\to) on XX, with characteristic class

(3)HH 3(X,) H \in H^3(X,\mathbb{Z})

is an embedded oriented submanifold

(4)ϕ:WX \phi : W \to X

together with a Chan-Paton K-theory class

(5)EK 0(W) E \in K^0(W)

such that the Freed-Witten anomaly cancellation condition

(6)ϕ *H=W 3(W) \phi^* H = W_3(W)

holds, where W 3W_3 denotes the third Stieffel/Whitney class.

There are various ways how to encode the gerbe GX\mathbf{G} \to X in terms of ordinary differential geometric structures. As before in the context of topological T-duality, one here finds it convenient to think of the gerbe in terms of its (possibly infinite-rank) gerbe modules (\to), hence PU(H)BU(1)P PU(H)\simeq BU(1) \simeq \mathbb{C}P^\infty-bundles, for HH some seperable Hilbert space, or rather the associated vector bundles of compact operators on HH. I believe we can think of these as coming from the endomorphism bundle of our gerbe module.

This latter point of view will be the one best suited for the C *C^*-algebraic setup, since we may associate to such algebra bundles naturally the C *C^*-algebra of sections of the bundle.

(I am still wondering if from this algebra one can get a globally well defined version of the Seiberg-Witten Moyal star, which is locally given by something like θ(g±B) 1\theta \propto (g \pm B)^{-1}, for BB the local gerbe connection 2-form. But nobody seems to know.)

In order to say something about the charges of these D-branes, we need a couple of pairings involving K-cohomology and -homology (\to).

A D-brane as defined above, can be taken to define a class in the K-homology of XX

(7)K (X), K_\bullet(X) \,,

or, more precisely, in the presence of a Kalb-Ramond-gerbe, a class in the twisted K-homology

(8)K (X,H). K_\bullet(X,H) \,.

Next, we want to define the RR-charge of a given D-brane. In words, this is computed by

\bullet pushing the Chan-Paton bundle from the worldvolume forward (the “wrong way” (\to)) intto spacetime XX

\bullet computing its Chern class there

\bullet cup-multiplying this Chern class with half of the Atiyah-Hirzebruch class of spacetime

\bullet pulling the result back to the world-volume WW

\bullet and evaluating it on WW.

If we denote the ordinary Chern class of a bundle NN with ch(N)\mathrm{ch}(N), and the modified Chern class by

(9)Ch(N):=ch(N)A^(H), \mathrm{Ch}(N) := \mathrm{ch}(N) \cup \sqrt{\hat A(H)} \,,

where A^\hat A is the Atiyah-Hirzebruch class, then the above reads in formulas

Definition 3) The RR-charge of a D-brane with world volume ϕ:WX\phi : W \to X and Chan-Paton bundle EE is

(10)Q ϕ,W,E:=ϕ *Ch(ϕ !E)[W]. Q_{\phi,W,E} := \phi^* \mathrm{Ch}(\phi_! E)[W] \,.

Understanding this formula in more detail crucially involves Poincaé duality. The goal is to generalize this notion of Poincaré duality to K-theory over noncommutative spaces. The authors of the above paper argue that the best language for that is Kasparov’s KK-Theory It turns out that the notion of Poincaré duality we wish to find amounts KK bimodule composition with invertible ABA \otimes B-C\C-bimodules.

The authors emphasize the usefulness of a certain diagrammatic notation for dealing with the bimodule-like product on Kasparov bimodules. To my mind, it seems that this notation is nothing but the obvious string diagram notation for dealing with categoriy of bimodules internal to braided categories. Essentially, all this lives in fact in a 3-category of the sort discussed here.


[ more later….]

Posted at July 20, 2006 10:36 PM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/879

0 Comments & 4 Trackbacks

Read the post K-Theory for Dummies, II
Weblog: The String Coffee Table
Excerpt: Some remarks on K-theory and D-branes.
Tracked: July 26, 2006 2:16 PM
Read the post Connes on Spectral Geometry of the Standard Model, I
Weblog: The n-Category Café
Excerpt: Connes is coming closer to the spectral triple encoding the standard model coupled to gravity. Part I: some background material.
Tracked: September 6, 2006 12:21 PM
Read the post QFT of Charged n-particle: Chan-Paton Bundles
Weblog: The n-Category Café
Excerpt: Chan-Paton bundles from the pull-push quantization of the open 2-particle.
Tracked: February 7, 2007 8:32 PM
Read the post n-Bundle Obstructions for Bruce
Weblog: The n-Category Café
Excerpt: On the global description of n-bundles obstructing lifts through shifted central extensions.
Tracked: November 5, 2007 9:02 AM