Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

February 27, 2006

Kapranov and Ganter on 2-Characters

Posted by Urs Schreiber

In

Nora Ganter & Mikhail Kapranov
Representation and Character Theory in 2-Categories
math.KT/0602510

an interesting relation between a notion of trace for lax group representations and various known phenomena all somehow related to equivariant string theory are established.

[Update: I had a typo in the original version of the following, which was kindly pointed out to me by Mark Hovey.]

As is well known, a representation in CC of a group GG is nothing but a functor

(1)ρ:Σ(G)C. \rho : \Sigma(G) \to C \,.

(Here I denote by Σ(G)\Sigma(G) the suspension of GG. This is the category with a single object and a morphism for each element of GG.)

Better yet, the representation category is nothing but the functor category

(2)Rep(G)[Σ(G),C]. \mathrm{Rep}(G) \simeq [\Sigma(G),C] \,.

Therefore it is obvious that a representation for a 2-group GG should be a 2-functor

(3)ρ:Σ(G)C, \rho : \Sigma(G) \to C\,,

where now CC is some 2-category. We have an entire 2-category of 2-representations, namely the 2-functor 2-category

(4)Rep(G)[Σ(G),C]. \mathrm{Rep}(G) \simeq [\Sigma(G),C] \,.

Nothing more obvious than this.

Unpacking this definition requires work. And there is far more freedom of choice of representation than in the in the ordinary setup. For one, there are “more” sensible target 2-categories CC that one would be interested in, because there are many flavors of categorified vector spaces. Furthermore, there is a large freedom in choosing the level of coherent weakening one is working with.

As far as I am aware, the first study of representations of (strict) 2-groups is the PhD thesis

Magnus Forrester-Barker
Representations of Crossed Modules and Cat 1\mathrm{Cat}^1-Groups
\to pdf.

Here strict 2-groups (or the crossed modules of groups they are equivalent to) are represented on Baez-Crans 2-vector spaces. (The author thinks of these equivalently in terms of 2-term chain complexes.)

In general, a 2-vector space should be a 2-module over a 2-(semi)ring. Baez-Crans 2-vector spaces are modules over the 2-ring K[0]K[0] which has elements of a field KK as objects and only identity morphisms between these.

Another interesting 2-semi ring is Vect K\mathrm{Vect}_K, the category of vector spaces over KK. The 2-vector spaces invented by Kapranov and Voevodsky are modules over these. These are the ones appearing in BDR’s approach to elliptic cohomology (\to) and this is what Ganter and Kapranov are interested in.

Representation of 2-groups on the 2-category KV2Vect\text{KV2Vect} of Kapranov-Voevodsky 2-vector spaces have been investigated before in

Josep Elgueta
Representation theory of 2-groups on Kapranov and Voevodsky’s 2-vector spaces
math.CT/0408120.

Ganter and Kapranov actually restrict attention to a special case of this. They restrict attention to 2-groups coming from crossed modules of the form

(5)(1G). (1 \to G) \,.

(Note that this is my paraphrasing of what they do, supposed to embed this into the context of the two papers mentioned above. Ganter/Kapranov don’t mention the term 2-group at all. Compare their paragraph 4.1 on p. 9.)

Hence for them, a 2-representation of an ordinary group GG is a lax 2-functor

(6)ρ:Σ(1G)C. \rho : \Sigma(1 \to G) \to C \,.

This means that ρ\rho is a gadget which picks a single object XObj(C)X \in \mathrm{Obj}(C), assigns to each group element gGg \in G an endo-1-morphisms Xρ(g)XX\overset{\rho(g)}{\to } X , and assigns to pairs of group elements (g,h)(g,h) a coherent 2-isomorphism

(7)XρgXρ(h)X ϕ g,h Xρ(gh)X. \array{ X \overset{\rho{g}}{\to} X \overset{\rho(h)}{\to} X \\ \;\;\;\;\;\;\;\Downarrow \phi_{g,h} \\ X \overset{\rho(gh)}{\to} X } \,.

ϕ\phi being coherent means that it satisfies an obvious associativity condition. This will turn out, as usual, to be related to certain cocycle data.

While being “only” a very special case of the most general notion of 2-representation, this already has very interesting examples. For instance “1-dimensional” 2-representations of this kind are nothing but projective ordinary representations of given central charge.

So far, this is nothing but a specialization of the above mentioned general idea of a 2-representation. The crucial new idea introduced by Ganter and Kapranov is that of a categorified concept of the notion of trace of a representation - hence a categorification of the concept of character.

The strong motivation for this, mentioned in their introduction and explained in more detail in section 8.1, is the following.

As I will explain in a minute, the trace operation invented by Ganter/Kapranov maps 2-representations of the group GG to representations of its inertia groupoid Λ(G)\Lambda(G).

Now broaden the perspective by thinking of representations as special cases of equivariant bundles. A representation of an ordinary group GG is obviously the same as a GG-equivariant bundle over a single point. From this it follows that the group completed decategorification of the category Rep(G)\mathrm{Rep}(G) is nothing but the GG-equivariant KK-theory of a point. So there is nothing more natural than generalizing to KK-theory over general orbifolds. But - and that is finally the point - Moerdijk tells us that the orbifold K-theory maps to the homology of the inertia groupoid Λ(M)\Lambda(M) of the groupoid MM representing the orbifold (see p. 17 of his review).

While it may take a little to digest this analogy completely, the simple upshot is this: Ganter and Kapranov expect that their theory of 2-representations is nothing but the restriction to point-like orbifolds of a categorification of equivariant K-theory, hence of equivariant ellitptic cohomology.

This explains why the results they obtain, parts of which I will discuss now, reproduce phenomena known from what they call equivariant string theory in the introduction.


One main result is this.

Recall that for an ordinary group GG a class function is a map

(8)χ:GK \chi : G \to K

to some field KK (i.e. a 1-dimensional representation) which is invariant under conjugation

(9)χ(fgf 1)=χ(g). \chi(fgf^{-1}) = \chi(g) \,.

Now, it turns out that in GG-equivariant versions of higher cohomology theories (such as elliptic cohomology), one encounters generalizations of these, the nn-class functions

(10)χ(g 1,g 2,,g n) \chi(g_1,g_2,\dots,g_n)

which map nn-tuples of pairwise commuting elements of GG to KK, such that they are invariant under simultaneous conjugation of all nn elements.

But, of course for n=1n=1 class functions come from traces of representations ρ:Σ(G)Vect\rho : \Sigma(G) \to \mathrm{Vect}

(11)χ ρ(g)=trace(ρ). \chi_\rho(g) = \mathrm{trace}(\rho)\,.

Hence one is led to wonder if nn-class functions are related to categorified traces. Indeed, Ganter and Kapranov show that their categorified trace gives rise to 2-class functions.

The definition of a categorified trace can nicely be motivated using Kapranov-Voevodsky 2-vector spaces. Here a linear map of 2-vector spaces (to be precise, we are implicitly using a semi-coordinatized version of these 2-vector spaces, but never mind) is a n×nn \times n matrix AA whose entries are vector spaces, A=(A ij)A = (A_{ij}). Its 2-trace should hence be the vector space

(12)Tr((A ij))= iA ii. \mathrm{Tr}((A_{ij})) = \oplus_{i} A_ii \,.

2-morphisms in this category are simply matrices whose entries are linear maps, going componentwise between the entries of the source and target 1-morphisms. Hence it is obvious that the above 2-trace is nothing but the space of 2-morphisms from the identity 1-morphisms on nn to AA:

(13)Tr((A ij))2Hom KV2Vect(nIdn,nAn). \mathrm{Tr}((A_{ij})) \simeq \text{2Hom}_{\text{KV2Vect}}( n \overset{\mathrm{Id}}{\to} n \;,\; n \overset{A}{\to} n ) \,.

This, then, suggests that we define generally for every 1-morphism xFxx \overset{F}{\to} x in some 2-category CC

(14)Tr(F)=2Hom C(Id x,F). \mathrm{Tr}(F) = \text{2Hom}_C(\mathrm{Id}_x,F) \,.

That’s definition 3.1 on p. 6 of. Apparently, the same concept is currently being studied by Bruce Bartlett and Simon Willerton.

If that’s the “categorical trace” then it’s obvious what the “categorical character” of a 2-representation is going to be (def. 4.6 on p. 11). Given a 2-representation ρ\rho, its categorical character is simply

(15)gTr(ρ(g)). g \mapsto \mathrm{Tr}(\rho(g)) \,.

(Recall that ρ(g)\rho(g) is the 1-morphisms which represents the action of the group element gg.) Note that this takes values in Set\mathrm{Set}! The categorical trace is a set of 2-morphisms. Of course, if our target 2-category is suitably enriched over some category VV, the categorical trace takes values in that VV.

We expect the categorical trace to be not just a map, but in fact a functor. Indeed, it is. As is easy to see (prop. 4.8) the images Tr(ρ(g))\mathrm{Tr}(\rho(g)) and Tr(ρ(fgf 1))\mathrm{Tr}(\rho(fgf^{-1})) are isomorphic. Hence, if we let Λ(G)\Lambda(G) be the category whose objects are the elements of GG and whose morphisms are conjugations in GG

(16)gffgf 1Mor(Λ(G)) g \overset{f}{\to} fgf^{-1} \;\; \in \Mor(\Lambda(G))

then the categorical trace is a functor

(17)Tr(ρ):Λ(G)Set. \mathrm{Tr}(\rho) : \Lambda(G) \to \mathrm{Set} \,.

One interesting example given is example 3.5 : the categorical trace of a 2-representations in the derived 2-category of bimodules gives the Hochschild cohomology of bimodules.

But a functor on a groupoid like Λ(G)\Lambda(G) is the obvious generalization of a representation of a group. Hence Tr(ρ)\mathrm{Tr}(\rho) is a groupoid representation. Here Λ(G)\Lambda(G) is called the inertia groupoid of GG and in fact the above functor is just the 1-morphism part of the map

(18)Tr:2Rep(G)Rep(Λ(G)) \mathrm{Tr} : \text{2Rep}(G) \to \mathrm{Rep}(\Lambda(G))

that I discussed above as a crucial motivation for the study of categorified traces.

So how do we get a 2-class function from this categorical trace? This way (def. 4.10):

Consider two commuting elements g,hGg,h \in G. They give rise to an automorphism

(19)ghhgh 1=g g \overset{h}{\to} hgh^{-1} = g

in the inertia groupoid Λ(G)\Lambda(G). This means that

(20)Tr(ρ(ghg)) \mathrm{Tr}(\rho(g \overset{h}{\to} g))

is an automorphism of the set Tr(ρ(g))\mathrm{Tr}(\rho(g)). If we work in the enriched case and our set is really a vector space, then Tr(ρ(ghg))\mathrm{Tr}(\rho(g \overset{h}{\to} g)) is an automorphism of that vector space. Hence we can take the ordinary trace of this linear map and finally obtain simply a number

(21)χ(g,h):=trace(Tr(ρ(ghg))). \chi\left(g,h\right) := \mathrm{trace} \left( \mathrm{Tr}\left(\rho\left(g \overset{h}{\to} g\right)\right) \right) \,.

One finds that this number is invariant under simultaneous conjugatins of gg and hh

(22)χ(sgs 1,shs 1)=χ(g,h). \chi(sgs^{-1},shs^{-1}) = \chi(g,h) \,.

Hence, in form of a slogan we have

The ordinary trace of the categorical trace of a 2-representation of GG is a 2-class function for GG.

Ganter and Kapranov discuss a couple of interesting examples. In particular, there is a close relation to E-theory (which Aaron Bergman a while ago mentioned here). There are also examples related to derived categories of coherent sheaves, which look particularly relevant to the idea of equivariant string theory, but I don’t have the energy left to talk about these now.

Posted at February 27, 2006 12:59 PM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/757

9 Comments & 3 Trackbacks

Re: Kapranov and Ganter on 2-Characters

In a comment to this blog post I raised the question of whether we might expect categorification of the special functions to appear with 2-representation theory. Something that might win over more people to higher-dimensional algebra would be the discovery of something as *concrete* as Bessel functions in their role as matrix elements of representations of important Lie groups. In the first few pages of this paper Cherednik exhibits this kind of attitude when he likens the difference between new concepts and new objects to that between the imaginary and the real.

Posted by: David Corfield on March 2, 2006 10:21 AM | Permalink | Reply to this

Re: Kapranov and Ganter on 2-Characters

These ideas you mention are spot-on, and Simon and I are indeed working
along many of these lines at the moment. Its true that, in some sense, the
theory is currently only talking about “point-like” orbifolds, but as you
say, it will hopefully generalize to the more interesting setting. Somehow,
one feels that a lot of roads in this whole business of equivariant string
theory, gerbes, elliptic cohomology, higher gauge theory, higher categories,
etc. are going to merge at some point.

Posted by: Bruce Bartlett on March 2, 2006 3:01 PM | Permalink | Reply to this

Re: Kapranov and Ganter on 2-Characters

I think David’s comment is quite relevant. I looked at Cherednik’s paper and found the introduction a most interesting, and shrewd, read. I will certainly keep this in mind from now on! Perhaps some further developments are necessary before the “real projection” of this stuff is nontrivial.

Posted by: Bruce Bartlett on March 2, 2006 5:49 PM | Permalink | Reply to this

Re: Kapranov and Ganter on 2-Characters

I suppose an obvious question to raise about Cherednik’s real/imaginary dichotomy is whether to take it as timeless. It’s questionable that your average nineteenth century mathematician beamed to the future would take his word for it that characters of Kac-Moody algebras (Fig. 2) are “fundamental objects” because they “are not far from the products of classical one-dimensional theta-functions and can be introduced without representation theory”.

Posted by: David Corfield on March 3, 2006 9:01 AM | Permalink | Reply to this

Re: Kapranov and Ganter on 2-Characters

Since he didn’t issue a trackback, let me just add a note by hand that David Corfield is further discussing this in this entry of his weblog.

Posted by: urs on May 23, 2006 12:31 PM | Permalink | Reply to this
Read the post Remarks on String(n)-Connections
Weblog: The String Coffee Table
Excerpt: Is Stolz/Teichner's String-connection a 2-connection in an associated 2-bundle?
Tracked: March 11, 2006 3:12 PM

Re: Kapranov and Ganter on 2-Characters

Just discovered this blog, and wanted to point out a typo. Ganter and Kapranov are considering crossed modules of the type
(1 –> G), not (G –> 1), which is a crossed module only if G is abelian. That is, we want the cat-group whose objects are G and morphisms are only identities. The category with one object whose morphisms are G is not a cat-group unless G is abelian. When we
suspend the cat-group with objects G we get the 2-category with one object whose 1-morphisms are G and whose 2-morphisms are only identites.

Posted by: Mark Hovey on April 25, 2006 6:38 PM | Permalink | Reply to this

Re: Kapranov and Ganter on 2-Characters

point out a typo

Right. Thanks for catching that one!

I’ll correct this (as soon as a find a spare minute).

Posted by: urs on April 26, 2006 4:54 PM | Permalink | Reply to this
Read the post Categorical Trace and Sections of 2-Transport
Weblog: The n-Category Café
Excerpt: A general concept of extended QFT and its relation to the Kapranov-Ganter 2-character.
Tracked: November 17, 2006 4:42 PM
Read the post Teleman on Topological Construction of Chern-Simons Theory
Weblog: The n-Category Café
Excerpt: A talk by Constant Teleman on extended Chern-Simons QFT and what to assign to the point.
Tracked: June 18, 2008 10:22 AM

Re: Kapranov and Ganter on 2-Characters

Dear Urs,
Since you posted this long time ago, I guess that you are aware of what I’m going to say. But let me just make the remark that 1-dimensional 2-representations of a group (in KV 2-vector spaces) do not correspond to projective representations of a given central charge. They just correspond to the central charge. To recover the categories of projective representations we have to consider the categories of intertwiners between such 2-representations. I think this is one of the interesting features of the theory. Maybe other people will also be reading your entry more than two years later…

Posted by: Josep Elgueta on July 6, 2008 10:32 AM | Permalink | Reply to this

Re: Kapranov and Ganter on 2-Characters

But let me just make the remark that 1-dimensional 2-representations of a group (in KV 2-vector spaces) do not correspond to projective representations of a given central charge. They just correspond to the central charge.

Right, thanks for catching that. (I assume you are pointing out that in the above entry I didn’t say that quite precisely.)

To recover the categories of projective representations we have to consider the categories of intertwiners between such 2-representations.

Yes. With the 2-representation regarded as a 2-functor from the one-object groupoid version BG\mathbf{B}G into KV2VectKV2Vect and for c:BGBV2Vectc : \mathbf{B}G \to BV2Vect the “central charge”, as above, projective reps with that central charge come from morphism into that 2-functor Ic. I \Rightarrow c \;. If we replace BG\mathbf{B}G here with a Čech groupoid, this gives us the statement that twisted vector bundles are morphisms into twisting gerbe, regarded as a line 2-vector bundles.

Accordingly, just as any odinary linear GG-representation can be regarded as a GG-equivariant vector bundle over a point, every projective representation can be regarded as a GG-equivariant gerbe module (= twisted vector bundle) over a point.

In general, one can do better and encode projective reps directly as 2-representations by going beyond KV-2vector spaces along the chain of inclusions KV2VectBimod(2Vect=VectMod). KV2Vect \hookrightarrow Bimod \to (2Vect = Vect-Mod).

Maybe other people will also be reading your entry more than two years later…

Sure. I always appreciate corrections.

Posted by: Urs Schreiber on July 6, 2008 7:09 PM | Permalink | Reply to this