Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

May 18, 2005

String(n), Part II

Posted by Urs Schreiber

In the last entry I have listed some facts related to the group String(n)\mathrm{String}(n). Here is the literature that my discussion was mainly based on as well as a review of what String(n)\mathrm{String}(n) has to do with 2-groups and 2-bundles.

I am now going to list some literature in which the above facts can be found discussed. Before doing so I would like to emphasize, though, that the situation sketched above remains at this point a little mysterious in that there is so far no transparent picture available which explains the relation between the need for LSO(n)^\widehat{L\mathrm{SO}(n)} on loop space LMLM to the need for that strange group String(n)\mathrm{String}(n) on spacetime itself. It just happens to work out this way.

In the remainder I therefore want to briefly review what the results of our paper have to say about this question, and how the above mystery is at least to large parts resolved by regarding strings as categorified points.

But first some literature:

One of the earliest discussions of these issues is given in

T. Killingback
World-Sheet Anomalies and Loop Geometry
Nucl.Phys.B288:578,1987

Killingback discusses the spinning point particle, the spinning string, the obstructions to lifting the LSO(n)L\mathrm{SO}(n)-bundle on loop space to the central extension and the relation to the perturbative anomalies of the effective field theory of the heterotic string.

As a supplement to this I can recommend the nice and more detailed discussion of the relation between H 3(LM;)H^3(LM;\mathbb{Z}) and p 1/2p_1/2 as given in

M. Murray & D. Stevenson
Higgs Fields, Bundle Gerbes and String Structures
math.DG/0106179

A more detailed discussion of the nature of Dirac operators on loop space with a review of Killinback’s results is given in

E. Witten
The Index of the Dirac Operator in Loop Space
Proc. of Conf. on Elliptic Curves and Modular Forms in Algebraic Topology, Princeton, N.J., Sep 1986.

which has the companion paper

E. Witten
Elliptic Genera and Quantum Field Theory
Commun.Math.Phys.109:525,1987

Concerning the group String(n)\mathrm{String}(n) I can only point to

S. Stolz & P. Teichner
What is an Elliptic Object?
in:
U. Tillmann (ed.)
Topology, Geometry and Quantum Field Theory
Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal
London Mathematical Society Lecture Notes Series 308 Cambridge University Press (2004)
online available here

A discussion of the group String(n)\mathrm{String}(n) and of string structures is given on the top of p. 5 of this text and then in the beginning of section 5 on pp. 65. The ‘killing’ of homotopy groups is discussed on p. 65, the definition of String(n)\mathrm{String}(n) by means of an exact sequence is discussed on p. 66, and the relation to the Pontryagin class is discussed on p. 67.

To conclude, I’ll briefly sketch aspects of the category-theoretic picture behind all this, as discussed in

J. Baez, A. Crans, U. Schreiber & D. Stevenson
From Loop Groups to 2-Groups
math.QA/0504123.

Like a point particle couples to a bundle, a string should couple to a categorified bundle, called a 2-bundle. Indeed, it is for instance well known that the Kalb-Ramond BB-field that the string couples to really is the 2-connection of an abelian gerbe, which is nothing but an abelian 2-bundle.

The structure group (‘gauge group’) of a 2-bundle is a 2-group, which is the categorification (‘stringification’) of an ordinary group. So-called strict 2-groups are determined in terms of crossed modules of two ordinary groups.

Hence it is natural to ask if there is a crossed module involving the group LSO(n)^\widehat{L\mathrm{SO}(n)} that is relevant for spinning strings, such that we get a 2-bundle with structure 2-group from it which would describe the parallel transport of spinning strings.

This indeed seems to be possible.

In the above paper it is shown that there are 2-groups called 𝒫 kSpin(n)\mathcal{P}_k \mathrm{Spin}(n) and kSpin(n)\mathcal{L}_k \mathrm{Spin}(n) of this kind which fit into a strict exact sequence of 2-groups

(1)1 kSpin(n)𝒫 kSpin(n)Spin(n)1 1 \to \mathcal{L}_k\mathrm{Spin}(n) \to \mathcal{P}_k\mathrm{Spin}(n) \to \mathrm{Spin}(n) \to 1

One can show that the lift of an ordinary Spin(n)\mathrm{Spin}(n)-bundle EME \to M to a 2-bundle with structure 2-group 𝒫 kSpin(n)\mathcal{P}_k \mathrm{Spin}(n) should be obstructed precisely by 12p 1(M)\frac{1}{2}p_1(M). (The proof of this is sort of obvious given certain ingredients which I haven’t discussed here, but since it is not written down yet in fully rigorous form I am forced to say ‘should’ for now.)

Furthermore, one can show that 𝒫 kSpin(n)\mathcal{P}_k\mathrm{Spin}(n) knows all about String(n)\mathrm{String}(n):

There is a notion called taking the geometric realization of the nerve of a category. This amounts essentially to building a simplicial space |C||C| in which to every tuple of nn composable morphisms in the category CC there is an nn-simplex in |C||C|.

(For example when C=GC = G is just a group regarded as a category with only one object and all morphisms invertible, then |C|BG|C| \simeq BG is nothing but the classifying space of GG.)

When CC is a topological category, the space |C||C| inherits a topology and becomes a topological space. When |C||C| is also a 2-group, |C||C| becomes a topological group.

(So for instance if GG is abelian we can regard it as a strict 2-group with the group of objects being trivial, and then BGBG is indeed itself an abelian group.)

Moreover, the operation |||\cdot| extends to a functor from the category of 2-groups to that of topological spaces. Hence we can apply it to the above exact sequence and obtain an exact sequence of topological groups:

(2)1| kSpin(n)||𝒫 kSpin(n)|Spin(n)1. 1 \to |\mathcal{L}_k\mathrm{Spin}(n)| \to |\mathcal{P}_k\mathrm{Spin}(n)| \to \mathrm{Spin}(n) \to 1 \,.

The fun thing is now that one can show that | kSpin(n)||\mathcal{L}_k \mathrm{Spin}(n)| is an Eilenberg-MacLane space K(,2)K(\mathbb{Z},2). Hence if I write this as

(3)1K(,2)|𝒫 (k=1)Spin(n)|Spin(n)1, 1 \to K(\mathbb{Z},2) \to |\mathcal{P}_{(k=1)}\mathrm{Spin}(n)| \to \mathrm{Spin}(n) \to 1 \,,

then comparison with the exact sequence

(4)1K(,2)String(n)Spin(n)1 1 \to K(\mathbb{Z},2) \to \mathrm{String}(n) \to \mathrm{Spin}(n) \to 1

displayed in part I shows that this implies that hence |𝒫 kString(n)||\mathcal{P}_k\mathrm{String}(n)| is nothing but String(n)\mathrm{String}(n)

(5)|𝒫 (k=1)Spin(n)|String(n). |\mathcal{P}_{(k=1)}\mathrm{Spin}(n)| \simeq \mathrm{String}(n) \,.

Note that while String(n)\mathrm{String}(n) is only a topological group and defined only somewhat indirectly, the 2-group 𝒫 kSpin(n)\mathcal{P}_k \mathrm{Spin}(n) is Lie, meaning that every operation in it is indeed smooth, and furthermore it directly involves LSO(n)^\widehat{L\mathrm{SO}(n)} (in fact LSpin(n)^\widehat{L\mathrm{Spin}(n)}).

Hence it seems that 𝒫 (k=1)Spin(n)\mathcal{P}_{(k=1)}\mathrm{Spin}(n)-2-bundles are the geometrical bridge between LSO(n)^\widehat{L\mathrm{SO}(n)}-bundles on loop space and String(n)\mathrm{String}(n)-bundles on MM itself.

This again suggests that the notion of parallel transport of spinning strings is captured by the surface holonomy available in 2-bundles.

Interestingly, while the 2-group 𝒫 kSpin(n)\mathcal{P}_k\mathrm{Spin}(n) is infinite dimensional and requires a little bit of technology to get under control, its Lie 2-algebra is equivalent in the categorical sense to a very simple weak Lie 2-algebra called 𝔰𝔭𝔦𝔫 k\mathfrak{spin}_k, as we show in the last section of the above paper.

Using the technology of weak nonabelian Deligne hypercohomology mentioned in this recent entry and detailed in these notes it is possible to set up the infinitesimal version of 2-bundles with weak gauge Lie 2-algebra 𝔰𝔭𝔦𝔫 k(n)\mathfrak{spin}_k(n). This allows to compute the nonabelian Deligne hypercohomolohy class of these ‘infinitesimal 2-bundles’ and hence find a classification for them. I’d expect this to be the Pontryagin class once again. But this remains to be studied.

Posted at May 18, 2005 1:17 PM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/571

0 Comments & 3 Trackbacks

Read the post 10D SuGra 2-Connection
Weblog: The n-Category Café
Excerpt: On the Lie 2-algebra governing 10-dimensional supergravity.
Tracked: August 28, 2006 3:48 PM
Read the post Charges and Twisted Bundles, IV: Anomaly Cancellation
Weblog: The n-Category Café
Excerpt: How the fermionic anomaly may cancel against the charge anomaly in higher gauge theory: the Green-Schwarz mechanism
Tracked: April 27, 2008 7:29 PM
Read the post Dual Formulation of String Theory and Fivebrane Structures
Weblog: The n-Category Café
Excerpt: An article which discusses lifts through the 7-fold connected cover of the structure group of the tangent bundle in the context of electric-magnetic duality in string theory.
Tracked: April 28, 2008 3:36 AM