
Jackiw-Teitelboim Gravity After Saad-Shenker-Stanford

11/2020 (errors or inaccuracies are due to YF)

Why JT gravity?

JT computes cool stuff in 2D, sort of like CS in 3D.

But really, why JT gravity?

We’d like to understand AdS/CFT. Why not start with AdS2/CFT1? AdS2 is unlike AdSd>2

in that the backreaction from any excitation destroys the asymptotic AdS2 geometry. So pure
gravity in AdS2 isn’t so interesting. Moreover, in CFT1,

Tµµ = 0 =⇒ H = 0 (1)

(pure constraint), so conventional AdS/CFT only describes ground states.
But nearly AdS2 gravity is described universally (to leading order) by JT gravity, a theory

of 2D dilaton gravity whose bulk action is essentially

−1

2

∫
d2x
√
gφ(R+ 2). (2)

The dilaton and metric are non-dynamical. The boundary modes are described universally by an
action invariant under the global SL(2,R) to which asymptotic diffs of AdS2 are spontaneously
broken (think Virasoro), given by a Schwarzian derivative.

Why the recent interest in the nAdS2/nCFT1 correspondence? One physical motivation
is a toy model of holography (Kitaev, 2015):

SYK model
IR−→ Schwarzian theory on S1 holography←−−−−−→ JT gravity on D2 (3)

Another physical motivation is the universality of the low-energy physics of near-extremal black
holes (which have an AdS2 factor in their near-horizon geometry).

Main Results of SSS

The main result is the partition function of JT gravity

〈Z(β1) · · ·Z(βn)〉connected (4)

on surfaces with n asymptotic (contrast with geodesic!) boundaries and arbitrary genus. The
genus expansion of this quantity coincides with that of a Hermitian matrix model.
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• Physical Statement (due to SSS):

JT gravity = ensemble of random Hamiltonians. (5)

• Mathematical Statement (due to mathematicians):

Mirzakhani’s recursion relation for WP volumes = (6)

Eynard-Orantin topological recursion for correlation functions in a matrix model.

This is an example of a very old connection between 2D gravity and random matrices.

Random Matrices

Consider a Hermitian (one-)matrix model:

Z =

∫
dH e−LTrV (H), (7)

H = L× L Hermitian matrix (“Hamiltonian of boundary theory”).

The basic observable is the thermal partition function

Z(β) = Tr e−βH , (8)

not to be confused with the partition function Z of the matrix model. Expectation values are

〈Z(β1) · · ·Z(βn)〉 =
1

Z

∫
dH e−LTrV (H)Z(β1) · · ·Z(βn). (9)

These matrix models are solvable for L→∞. Correlation functions have a perturbative expan-
sion (topological expansion) in 1/L2. For general V (H), the “loop equations” (via topological
recursion) determine all terms in this perturbative expansion in terms of a function

ρ0(E) = density of eigenvalues as L→∞ (suitably normalized). (10)

Example (Gaussian matrix model):

V (H) =
H2

2
=⇒ eigenvalue density = Lρ0(E), ρ0(E) =

√
4− E2

2π
,

∫ 2

−2

ρ0(E) dE = 1

(11)
(Wigner’s semicircle law).

It is convenient to define the resolvent

R(E) = Tr
1

E −H
=

L∑
j=1

1

E − λj
, E ∈ C, {λj} = eigenvalues of H. (12)

For fixed H, this function is a sum of simple poles. We can also define the density of eigenvalues

ρ(E) =

L∑
j=1

δ(E − λj). (13)

For fixed H, this function is a sum of delta functions. After averaging over H, the poles in R(E)
are smeared into a branch cut, and ρ(E) becomes a smooth function. The discontinuity of R(E)
across the real axis is given by

R(E + iε)−R(E − iε) = −2πiρ(E). (14)
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For fixed H, this equality follows from

1

x+ iε
− 1

x− iε
= − 2iε

x2 + ε2
ε→0−−−→ −2πiδ(x). (15)

It continues to hold after averaging over H. The thermal partition function Z(β) = Tr e−βH is
related to the resolvent R(E) by an integral transform:

R(E) = −
∫ ∞

0

dβ eβEZ(β), (16)

which makes sense for E < ground-state energy = 0. The expression can be analytically contin-
ued in E after doing the integral.

Correlation functions of R(E) have a 1/L expansion of the form

〈R(E1) · · ·R(En)〉connected '
∞∑
g=0

Rg,n(E1, . . . , En)

L2g+n−2
, (17)

as do correlation functions of Z(β). The parameter g corresponds to the genus of the diagrams
that contribute to a given term, in ’t Hooft’s double-line notation. The connected part corre-
sponds to subtracting one-point functions (connected geometries in gravity). The “'” indicates
an asymptotic series (nonperturbative effects matter).

The quantity R0,1 (“disk”) determines the leading density of eigenvalues ρ0(E), which is the
seed for the topological recursion relations. As L→∞, ρ(E) can be approximated by a smooth
function that is the same for all typical matrices drawn from the ensemble. The unit-normalized
density of eigenvalues in the large-L limit is

ρ0(E) = lim
L→∞

1

L
〈ρ(E)〉. (18)

We focus on the simplest one-cut matrix models, with ρ0(E) supported on a single interval:

E ∈ [a−, a+],

∫ a+

a−

ρ0(E) dE = 1. (19)

We have

R0,1(E + iε)−R0,1(E − iε) = −2πiρ0(E)⇐⇒ R0,1(E) =

∫ a+

a−

dλ
ρ0(λ)

E − λ
(20)

(this is just the continuous version of the relation between the discrete R(E) and ρ(E)).

We can determine ρ0 or R0,1 from V (H) via a mean-field approximation (which becomes
exact as L → ∞). As usual, we can diagonalize H to write the matrix integral as an integral
over eigenvalues. The Jacobian is a Vandermonde determinant:

Z ∝
∫
dLλ

∏
i<j

(λi − λj)2e−L
∑L

j=1 V (λj) =

∫
dLλ e−

∑L
j=1 Veff(λj) (21)
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where

Veff(λj) = LV (λj)−
∑
i6=j

log[(λi − λj)2] ≈ LV (λj)− L
∫
dλ ρ0(λ) log[(λ− λj)2]. (22)

Each eigenvalue feels the same effective potential, and the equilibrium condition is

V ′eff(E) = 0 =⇒ V ′(E) = 2

∫
PV

dλ
ρ0(λ)

E − λ
. (23)

The reason for the principal value prescription is that we must omit the i = j term from the
sum in Veff(λj), so λ can never literally be E; we can achieve this by offsetting E from the real
axis and taking the average of the results of doing so above and below:

V ′(E) = R0,1(E + iε) +R0,1(E − iε). (24)

One can use this relation to derive an explicit formula for R0,1 in terms of V .
The loop equations (cf. Schwinger-Dyson equations) allow us to systematically compute all

Rg,n. We start with

0 =

∫
dLλ

∂

∂λa

 1

E − λa
R(E1) · · ·R(Ek)

∏
i<j

(λi − λj)2e−L
∑L

j=1 V (λj)

 (25)

and sum over a (to get expectation values of traces). By expanding in powers of 1/L, we obtain
a set of equations relating various Rg,n that can be solved recursively.

Double-Scaled Matrix Models

JT gravity is actually dual to a matrix model with non-normalizable ρ0(E). This is a double-
scaled matrix model where L→∞ while V is tuned such that ρ0(E) remains finite near the
edge of the distribution.

The eigenvalue density of this matrix model has a single endpoint, which we take to be at
E = 0. Hence it isn’t normalizable (imagine taking one endpoint of the interval for a one-cut
matrix model to ∞). This can be understood as a “double-scaled” limit of an ordinary matrix
model. Specifically, we are interested in the leading density of eigenvalues

ρtotal
0 (E) =

eS0

(2π)2
sinh(2π

√
E), E > 0. (26)

The “total” means that we are not dividing by L. To get this, imagine choosing a potential and
a value of L such that

ρtotal
0 (E) =

eS0

(2π)2
sinh

(
2π

√
a2 − E2

2a

)
, −a < E < a (27)

for some finite a. To get the desired density, we shift E → E − a and take a → ∞ such that
ρtotal

0 (E) remains normalized to have integral L (this means that L/eS0 becomes large in an
a-dependent way). In the resulting double-scaled matrix model, the 1/L expansion is replaced
by an e−S0 expansion:

〈R(E1) · · ·R(En)〉connected '
∞∑
g=0

Rg,n(E1, . . . , En)

(eS0)2g+n−2
. (28)

Likewise, we define the “unit-normalized” density of states as

ρ0(E) = e−S0ρtotal
0 (E) (29)

rather than as ρ0 = 1
Lρ

total
0 . The e−S0 expansion is completely determined by ρ0.
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Topological Recursion

We can now state the Eynard(-Orantin) topological recursion for correlation functions of resol-
vents in our matrix model of interest, or specifically for the Rg,n. The point is that topological
recursion determines all Rg,n (and hence all correlators), given the leading density
of states ρ0(E).

It turns out that the Rg,n are generally double-valued functions of E. But they are single-
valued functions of z where

z2 = −E. (30)

This is a coordinate on a double cover of the E-plane branched over the cut (in the double-scaled
limit, branched over the origin). We also define the following single-valued function of z (simply
a rescaled version of the leading density of states):

y(z) =
sin(2πz)

4π
. (31)

The locus (z2, y(z)) ⊂ C2 is the “spectral curve” of the matrix model. It is a double cover of the
complex E-plane, with the two sheets differing by y → −y. Now we define

Wg,n(z1, . . . , zn) = (−1)n2nz1 · · · znRg,n(−z2
1 , . . . ,−z2

n), (32)

except for the two special cases

W0,1(z) = 2zy(z), W0,2(z1, z2) =
1

(z1 − z2)2
. (33)

These are the base cases of the recursion relation, which determines all other Wg,n. To state it,
let J ≡ {z2, . . . , zn}. Then

Wg,n(z1, z2, . . . , zn) = residue at z = 0 of

1

4(z2
1 − z2)y(z)

Wg−1,n+1(z,−z, J) +

′∑
I∪I′=J
h+h′=g

Wh,1+|I|(z, I)Wh′,1+|I′|(−z, I ′)

 , (34)

where the sum excludes the cases (I = J, h = g) and (I ′ = J, h′ = g).
The first few cases, for our spectral curve, are

W0,1 =
z1 sin(2πz1)

2π
, W0,2 =

1

(z1 − z2)2
, W0,3 =

1

z2
1z

2
2z

2
3

,

W1,1 =
3 + 2π2z2

1

24z4
1

, W1,2 =
5(z4

1 + z4
2) + 3z2

1z
2
2 + 4π2(z4

1z
2
2 + z4

2z
2
1) + 2π4z4

1z
4
2

8z6
1z

6
2

, (35)

W2,1 =
105

128z10
1

+
203π2

192z8
1

+
139π4

192z6
1

+
169π6

480z4
1

+
29π8

192z2
1

.

The key fact is that the quantities Wg,n are the Laplace transforms of the volumes
Vg,n(b1, . . . , bn) of the moduli space of bordered Riemann surfaces. Using Mirzakhani’s
recursion, the first few examples are computed to be

V0,1 = undefined, V0,2 = undefined, V0,3 = 1,

Ṽ1,1 =
b21 + 4π2

48
, V1,2 =

(4π2 + b21 + b22)(12π2 + b21 + b22)

192
, (36)
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V2,1 =
(4π2 + b21)(12π2 + b21)(6960π4 + 384π2b21 + 5b41)

2211840
,

where the tilde on Ṽ1,1 indicates that this moduli space has a Z2 symmetry, which we have
quotiented by. We can check explicitly for these examples that

Wg,n(z1, . . . , zn) =

∫ ∞
0

b1db1e
−b1z1 · · ·

∫ ∞
0

bndbne
−bnznVg,n(b1, . . . , bn). (37)

This actually holds in general. In other words, Eynard-Orantin showed that the Laplace trans-
form of Mirzakhani’s recursion takes the form of topological recursion with the spectral curve
y = sin(2πz)/4π. This is a link

loop equations of a double-scaled matrix model↔WP volumes. (38)

SSS use this statement to show that JT gravity is dual to a matrix ensemble.

Back to JT Gravity: Results

JT gravity has Euclidean action

IJT[gµν , φ] = −S0

2π

(
1

2

∫
M

√
gR+

∫
∂M

√
hK

)
− 1

2

∫
M

√
gφ(R+ 2)−

∫
∂M

√
hφ(K − 1) (39)

where:

• the first term evaluates to −S0χ(M) (by Gauss-Bonnet) and weights topologies by (eS0)χ

(where χ = 2− 2g − n and, in BH language, S0 is “extremal entropy”),

• the second term sets R = −2 (the “2” is conventional),

• the third term gives rise to the Schwarzian action on the boundary.

For instance, here are some topologies for 〈Z(β)〉 with weights e(1−2g)S0 :

In nAdS2/nCFT1 (Maldacena-Stanford-Yang, 2016), we introduce a radial IR cutoff in AdS
(i.e., a UV cutoff ε in the boundary theory). Correlation functions are computed by fixing the
boundary lengths of M to be

β1

ε
, . . . ,

βn
ε

(40)

and imposing the boundary condition

φ =
γ

ε
(we take γ = 1/2) (41)

at each boundary. We take ε→ 0 at the end.
To evaluate the path integral, we first integrate over φ, leaving an integral over surfaces of

constant negative curvature. Since the boundary conditions only fix the lengths of the bound-
aries, we then have to integrate over their shapes (the “boundary wiggles”). The action for
these wiggles (the Schwarzian theory) comes from the extrinsic curvature term. Within each
topological class (for g > 0), we also have to do a finite-dimensional integral over moduli.
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To do these integrals, we imagine cutting the surface along minimal geodesics into a Riemann
surface Σg,n and n hyperbolic trumpets, where each trumpet has one Schwarzian (asymptotic)
boundary and one geodesic boundary. Holding the lengths b1, . . . , bn of the geodesics fixed, we
integrate over the moduli of Σg,n and over the wiggles at the Schwarzian boundaries, and finally
integrate over the bi (“glue”). This gives

〈Z(β1) · · ·Z(βn)〉connected '
∞∑
g=0

Zg,n(β1, . . . , βn)

(eS0)2g+n−2
(42)

where

Zg,n(β1, . . . , βn) =

∫ ∞
0

b1db1 · · ·
∫ ∞

0

bndbnVg,n(b1, . . . , bn)Ztrumpet
Sch (β1, b1) · · ·Ztrumpet

Sch (βn, bn)

(43)
and Vg,n(b1, . . . , bn) is the WP volume of the moduli space of bordered Riemann surfaces with
genus g and n geodesic boundaries of lengths b1, . . . , bn. The special cases are

Z0,1(β) = Zdisk
Sch (β), Z0,2(β1, β2) =

∫ ∞
0

b dbZtrumpet
Sch (β1, b)Z

trumpet
Sch (β2, b) (44)

where

Zdisk
Sch (β) =

eπ
2/β

4π1/2β3/2
, Ztrumpet

Sch (β, b) =
e−b

2/4β

2π1/2β1/2
. (45)

This is an asymptotic series because Vg,n grows as (2g)!. The matrix model gives a nonpertur-
bative completion of this series; the nonperturbative effects are due to the dynamics of single
eigenvalues (eigenbranes and probe branes).

Note that e−S0 is nonperturbative in GN ∼ 1/S0. These effects are perturbative from the
matrix model POV but nonperturbative from the gravity POV. Nonperturbative effects in the
matrix model are doubly nonperturbative in gravity.

The disk (genus zero) contribution to 〈Z(β)〉 is the Laplace transform of eS0ρ0(E). It is given
by the partition function of the Schwarzian theory, and it leads to the density of states

ρ0(E) =
sinh(2π

√
E)

(2π)2
, E > 0. (46)

This follows from supersymmetric localization, among other methods (Stanford-Witten, 2017).
One can then show that higher-genus contributions to arbitrary correlation functions satisfy the
topological recursion relations with this density of states as input.

SSS show (using results of Eynard-Orantin) that to all orders in e−S0 , JT gravity correlators
〈Z(β1) · · ·Z(βn)〉 coincide with correlators of Z(β) = Tr(e−βH) for H drawn from a double-scaled
matrix ensemble with Schwarzian density of states.

JT Gravity as Gauge Theory: Derivation

A term in the genus expansion of a connected correlator is given by the JT gravity path integral
for a given topology with the S0 term omitted from the action:

Zg,n(β1, . . . , βn) =

∫
d(bulk moduli)

∫
D(boundary wiggles) e

∫
∂M

√
hφ(K−1). (47)
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We need the measure for both integrals. For this, it is convenient to use the first-order formulation
of JT gravity to rewrite it as a topological gauge theory in 2D. It turns out that the JT gravity
path integral leads naturally to the WP measure on the bulk moduli.

Recall that the moduli space of bordered Riemann surfacesMg,n(b1, . . . , bn) is parametrized
by the 2k Fenchel-Nielsen coordinates

• b̃1, . . . , b̃k (lengths of internal gluing boundaries),

• τ1, . . . , τk (twist parameters),

where k = 3g + n− 3. The WP symplectic form on this space is simply

Ω =

k∑
i=1

db̃i ∧ dτi. (48)

The volume form is 1
k!Ω

k. Ω turns out to be invariant under change of pants decomposition, but
to compute

Vg,n(b1, . . . , bn) = vol(Mg,n(b1, . . . , bn)), (49)

one must restrict the integral to a fundamental domain.
Recall that on a Riemannian manifold, we can define an orthonormal frame by

gµν = eaµe
b
νδab (50)

where ωabµ = −ωbaµ is chosen such that the vielbein eaµ is covariantly constant. Write ea = eaµ dx
µ

and (in 2D) ωab = εabω. The spin connection is determined by the no-torsion condition

dea + ωab ∧ eb = 0. (51)

In 2D, we have
d2x
√
g = e1 ∧ e2, d2x

√
gR = 2 dω. (52)

So in the first-order formulation, we have

1

2

∫
d2x
√
gφ(R+ 2)→

∫
[φ(dω + e1 ∧ e2) + φa(dea + εabω ∧ eb)] = i

∫
Tr(BF ), (53)

where we introduced Lagrange multipliers φa to enforce the no-torsion condition and wrote

B = −i
(
−φ1 φ2 + φ
φ2 − φ φ1

)
, A =

1

2

(
−e1 e2 − ω
e2 + ω e1

)
, F = dA+A ∧A. (54)

This is an SL(2,R) (more precisely, sl(2,R)) BF theory!
Integrating out B gives the constraint F = 0, which reduces the path integral to an integral

over flat connections. In BF theory language, the measure on the space of flat connections is
very simple (Witten, 1991): it is induced by the symplectic form

Ω(σ, η) = 2

∫
Tr(σ ∧ η), (55)
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where σ, η are elements of the tangent space to the space of flat connections. This is a two-form
in the sense that it takes two vectors in the tangent space to a point and gives a number. Modulo
gauge transformations, the tangent space to A consists of gauge fields δA such that A+ εδA is
flat to linear order in ε. One can show that Ω is gauge-invariant on the space of flat connections.

The key fact is that this symplectic form on the space of flat SL(2,R) connections
is locally the same as the WP form on the moduli space of curves. We can see this
very concretely. Focus on the region near a particular gluing geodesic and choose coordinates
ρ, x where ρ is transverse and x is longitudinal (ρ < 0 is one side of the tube, and ρ > 0 is the
other). The metric is

ds2 = dρ2 + cosh2(ρ)(b dx+ τδ(ρ) dρ)2 ≡ dρ2 + cosh2(ρ) dy2 (56)

where
x ∼ x+ 1, y = bx+ τθ(ρ). (57)

The metric is smooth in y but discontinuous in x: the two tubes have been glued together with
a shift by τ in the x-direction. If we instead write this metric as an SL(2,R) gauge field A and
then consider small variations δib, δiτ for i = 1, 2, then we compute that

Tr(δ1A ∧ δ2A) =
1

2
(δ1b δ2τ − δ2b δ1τ)δ(ρ) dx ∧ dρ. (58)

Integrating over ρ, x gives
Ω(δ1A, δ2A) = δ1b δ2τ − δ2b δ1τ, (59)

which is precisely the WP symplectic form.
For physical applications, we want to impose asymptotically Euclidean AdS2 boundary con-

ditions. More precisely, to compute Z(β) in JT gravity, we move the boundary in from infinity
a little bit and impose (with γ = 1/2)

guu|∂ =
1

ε2
, φ|∂ =

γ

ε
, ε→ 0, (60)

where u is a proper length that runs from 0 to β, so that the total length is β/ε. These boundary
conditions admit a “boundary graviton” (reparametrization) mode that allows the ε-regularized
boundary to fluctuate while maintaining its length. In global coordinates

ds2 = dρ2 + sinh2(ρ) dθ2 (61)

for the hyperbolic disk (Euclidean AdS2), this boundary is described by a function θ(u) (angle
as a function of proper length); ρ(u) is then fixed by the boundary conditions.

One can do the path integral over the boundary wiggles in the BF theory language to evaluate
the partition function of the disk and the trumpet (the latter parametrized by the geodesic length
b). E.g., for the disk, the JT gravity action reduces to the boundary extrinsic curvature term

I =

∫
∂M

√
hφ(K − 1) = −1

2

∫
duSch

(
tan

θ(u)

2
, u

)
=

1

4

∫ β

0

du

(
θ′′2

θ′2
− θ′2

)
. (62)
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This is the famous Schwarzian theory.
Now we have the ingredients to compute the genus-g partition function with n boundaries,

Zg,n(β1, . . . , βn). The gluing measure for a single trumpet follows from the WP form, and we
must integrate over both the length b and the twist τ . Since twisting by b leaves the surface
invariant, τ ranges from 0 to b, and we are left with a measure for the length parameter (which
we integrate from 0 to ∞): ∫

τ

Ω = db

∫ b

0

dτ = b db. (63)

The genus-zero density of states is obtained from

Z0,1(β) =

∫ ∞
0

dE ρ0(E)e−βE , (64)

which yields the desired spectral curve.
Using the relation between resolvents and thermal partition functions, we see that the Wg,n

are related to the Zg,n by an integral transform

Wg,n(z1, . . . , zn) = 2nz1 · · · zn
∫ ∞

0

dβ1 e
−β1z

2
1 · · ·

∫ ∞
0

dβn e
−βnz

2
nZg,n(β1, . . . , βn). (65)

Using the gluing formula for Zg,n(β1, . . . , βn) and substituting the explicit Ztrumpet
Sch (β, b), we can

perform the integral over β inside the integral over b. Then we get precisely the boxed relation
between Wg,n and Vg,n that ensures, by Eynard-Orantin, that the Wg,n satisfy the recursion
relation with the desired spectral curve. So the sum over topologies in JT gravity reproduces
the genus expansion of a double-scaled matrix model with the aforementioned spectral density.
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